Cargando…
MicroRNA-181a Suppresses Mouse Granulosa Cell Proliferation by Targeting Activin Receptor IIA
Activin, a member of the transforming growth factor-β superfamily, promotes the growth of preantral follicles and the proliferation of granulosa cells. However, little is known about the role of microRNAs in activin-mediated granulosa cell proliferation. Here, we reported a dose- and time-dependent...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604175/ https://www.ncbi.nlm.nih.gov/pubmed/23527246 http://dx.doi.org/10.1371/journal.pone.0059667 |
Sumario: | Activin, a member of the transforming growth factor-β superfamily, promotes the growth of preantral follicles and the proliferation of granulosa cells. However, little is known about the role of microRNAs in activin-mediated granulosa cell proliferation. Here, we reported a dose- and time-dependent suppression of microRNA-181a (miR-181a) expression by activin A in mouse granulosa cells (mGC). Overexpression of miR-181a in mGC suppressed activin receptor IIA (acvr2a) expression by binding to its 3′-untranslated region (3′-UTR), resulting in down-regulation of cyclin D2 and proliferating cell nuclear antigen expression, leading to inhibition of the cellular proliferation, while overexpression of acvr2a attenuated the suppressive effect of miR-181a on mGC proliferation. Consistent with the inhibition of acvr2a expression, miR-181a prevented the phosphorylation of the activin intracellular signal transducer, mothers against decapentaplegic homolog 2 (Smad2), leading to the inactivation of activin signaling pathway. Interestingly, we found that miR-181a expression decreased in ovaries of mice at age of 8, 12, and 21 days, as compared with that in ovaries of 3-day old mice, and its level was reduced in preantral and antral follicles of mice compared with that in primary ones. Moreover, the level of miR-181a in the blood of patients with premature ovarian failure was significantly increased compared with that in normal females. This study identifies an interplay between miR-181a and acvr2a, and reveals an important role of miR-181a in regulating granulosa cell proliferation and ovarian follicle development. |
---|