Cargando…
Knowledge Driven Variable Selection (KDVS) – a new approach to enrichment analysis of gene signatures obtained from high–throughput data
BACKGROUND: High–throughput (HT) technologies provide huge amount of gene expression data that can be used to identify biomarkers useful in the clinical practice. The most frequently used approaches first select a set of genes (i.e. gene signature) able to characterize differences between two or mor...
Autores principales: | Zycinski, Grzegorz, Barla, Annalisa, Squillario, Margherita, Sanavia, Tiziana, Camillo, Barbara Di, Verri, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605163/ https://www.ncbi.nlm.nih.gov/pubmed/23302187 http://dx.doi.org/10.1186/1751-0473-8-2 |
Ejemplares similares
-
Enhancing Interpretability of Gene Signatures with Prior Biological Knowledge
por: Squillario, Margherita, et al.
Publicado: (2016) -
Effect of Size and Heterogeneity of Samples on Biomarker Discovery: Synthetic and Real Data Assessment
por: Di Camillo, Barbara, et al.
Publicado: (2012) -
Division algebras and extended super KdVs
por: Toppan, F
Publicado: (2001) -
A computational procedure for functional characterization of potential marker genes from molecular data: Alzheimer's as a case study
por: Squillario, Margherita, et al.
Publicado: (2011) -
Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l(1)-l(2) Regularization and Data Reduction
por: Fardin, Paolo, et al.
Publicado: (2010)