Cargando…
Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method
Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605369/ https://www.ncbi.nlm.nih.gov/pubmed/23374509 http://dx.doi.org/10.1186/1556-276X-8-56 |
_version_ | 1782263872947748864 |
---|---|
author | Qi, Cong He, Yurong Yan, Shengnan Tian, Fenglin Hu, Yanwei |
author_facet | Qi, Cong He, Yurong Yan, Shengnan Tian, Fenglin Hu, Yanwei |
author_sort | Qi, Cong |
collection | PubMed |
description | Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (T(H)), and the top wall is kept at a low constant temperature (T(C))) filled with Al(2)O(3)/H(2)O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. |
format | Online Article Text |
id | pubmed-3605369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-36053692013-03-25 Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method Qi, Cong He, Yurong Yan, Shengnan Tian, Fenglin Hu, Yanwei Nanoscale Res Lett Nano Express Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (T(H)), and the top wall is kept at a low constant temperature (T(C))) filled with Al(2)O(3)/H(2)O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. Springer 2013-02-04 /pmc/articles/PMC3605369/ /pubmed/23374509 http://dx.doi.org/10.1186/1556-276X-8-56 Text en Copyright ©2013 Qi et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nano Express Qi, Cong He, Yurong Yan, Shengnan Tian, Fenglin Hu, Yanwei Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title | Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title_full | Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title_fullStr | Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title_full_unstemmed | Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title_short | Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method |
title_sort | numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase lattice boltzmann method |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605369/ https://www.ncbi.nlm.nih.gov/pubmed/23374509 http://dx.doi.org/10.1186/1556-276X-8-56 |
work_keys_str_mv | AT qicong numericalsimulationofnaturalconvectioninasquareenclosurefilledwithnanofluidusingthetwophaselatticeboltzmannmethod AT heyurong numericalsimulationofnaturalconvectioninasquareenclosurefilledwithnanofluidusingthetwophaselatticeboltzmannmethod AT yanshengnan numericalsimulationofnaturalconvectioninasquareenclosurefilledwithnanofluidusingthetwophaselatticeboltzmannmethod AT tianfenglin numericalsimulationofnaturalconvectioninasquareenclosurefilledwithnanofluidusingthetwophaselatticeboltzmannmethod AT huyanwei numericalsimulationofnaturalconvectioninasquareenclosurefilledwithnanofluidusingthetwophaselatticeboltzmannmethod |