Cargando…
GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures
BACKGROUND: All sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To exp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605371/ https://www.ncbi.nlm.nih.gov/pubmed/23496949 http://dx.doi.org/10.1186/1471-2105-14-77 |
_version_ | 1782263873446871040 |
---|---|
author | Hammesfahr, Björn Odronitz, Florian Mühlhausen, Stefanie Waack, Stephan Kollmar, Martin |
author_facet | Hammesfahr, Björn Odronitz, Florian Mühlhausen, Stefanie Waack, Stephan Kollmar, Martin |
author_sort | Hammesfahr, Björn |
collection | PubMed |
description | BACKGROUND: All sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To explain the evolution of introns, basically two mutually exclusive concepts have been developed. The introns-early hypothesis says that already the very first protein-coding genes contained introns while the introns-late concept asserts that eukaryotic genes gained introns only after the emergence of the eukaryotic lineage. A very important aspect in this respect is the conservation of intron positions within homologous genes of different taxa. RESULTS: GenePainter is a standalone application for mapping gene structure information onto protein multiple sequence alignments. Based on the multiple sequence alignments the gene structures are aligned down to single nucleotides. GenePainter accounts for variable lengths in exons and introns, respects split codons at intron junctions and is able to handle sequencing and assembly errors, which are possible reasons for frame-shifts in exons and gaps in genome assemblies. Thus, even gene structures of considerably divergent proteins can properly be compared, as it is needed in phylogenetic analyses. Conserved intron positions can also be mapped to user-provided protein structures. For their visualization GenePainter provides scripts for the molecular graphics system PyMol. CONCLUSIONS: GenePainter is a tool to analyse gene structure conservation providing various visualization options. A stable version of GenePainter for all operating systems as well as documentation and example data are available at http://www.motorprotein.de/genepainter.html. |
format | Online Article Text |
id | pubmed-3605371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36053712013-03-23 GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures Hammesfahr, Björn Odronitz, Florian Mühlhausen, Stefanie Waack, Stephan Kollmar, Martin BMC Bioinformatics Software BACKGROUND: All sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To explain the evolution of introns, basically two mutually exclusive concepts have been developed. The introns-early hypothesis says that already the very first protein-coding genes contained introns while the introns-late concept asserts that eukaryotic genes gained introns only after the emergence of the eukaryotic lineage. A very important aspect in this respect is the conservation of intron positions within homologous genes of different taxa. RESULTS: GenePainter is a standalone application for mapping gene structure information onto protein multiple sequence alignments. Based on the multiple sequence alignments the gene structures are aligned down to single nucleotides. GenePainter accounts for variable lengths in exons and introns, respects split codons at intron junctions and is able to handle sequencing and assembly errors, which are possible reasons for frame-shifts in exons and gaps in genome assemblies. Thus, even gene structures of considerably divergent proteins can properly be compared, as it is needed in phylogenetic analyses. Conserved intron positions can also be mapped to user-provided protein structures. For their visualization GenePainter provides scripts for the molecular graphics system PyMol. CONCLUSIONS: GenePainter is a tool to analyse gene structure conservation providing various visualization options. A stable version of GenePainter for all operating systems as well as documentation and example data are available at http://www.motorprotein.de/genepainter.html. BioMed Central 2013-03-04 /pmc/articles/PMC3605371/ /pubmed/23496949 http://dx.doi.org/10.1186/1471-2105-14-77 Text en Copyright ©2013 Hammesfahr et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Hammesfahr, Björn Odronitz, Florian Mühlhausen, Stefanie Waack, Stephan Kollmar, Martin GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title | GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title_full | GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title_fullStr | GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title_full_unstemmed | GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title_short | GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
title_sort | genepainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605371/ https://www.ncbi.nlm.nih.gov/pubmed/23496949 http://dx.doi.org/10.1186/1471-2105-14-77 |
work_keys_str_mv | AT hammesfahrbjorn genepainterafasttoolforaligninggenestructuresofeukaryoticproteinfamiliesvisualizingthealignmentsandmappinggenestructuresontoproteinstructures AT odronitzflorian genepainterafasttoolforaligninggenestructuresofeukaryoticproteinfamiliesvisualizingthealignmentsandmappinggenestructuresontoproteinstructures AT muhlhausenstefanie genepainterafasttoolforaligninggenestructuresofeukaryoticproteinfamiliesvisualizingthealignmentsandmappinggenestructuresontoproteinstructures AT waackstephan genepainterafasttoolforaligninggenestructuresofeukaryoticproteinfamiliesvisualizingthealignmentsandmappinggenestructuresontoproteinstructures AT kollmarmartin genepainterafasttoolforaligninggenestructuresofeukaryoticproteinfamiliesvisualizingthealignmentsandmappinggenestructuresontoproteinstructures |