Cargando…
Testing Independent Component Patterns by Inter-Subject or Inter-Session Consistency
Independent component analysis (ICA) is increasingly used to analyze patterns of spontaneous activity in brain imaging. However, there are hardly any methods for answering the fundamental question: are the obtained components statistically significant? Most methods considering the significance of co...
Autores principales: | Hyvärinen, Aapo, Ramkumar, Pavan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605514/ https://www.ncbi.nlm.nih.gov/pubmed/23525229 http://dx.doi.org/10.3389/fnhum.2013.00094 |
Ejemplares similares
-
Independent component analysis: recent advances
por: Hyvärinen, Aapo
Publicado: (2013) -
Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning
por: Hyvärinen, Aapo, et al.
Publicado: (2023) -
Non-linear canonical correlation for joint analysis of MEG signals from two subjects
por: Campi, Cristina, et al.
Publicado: (2013) -
Olfaction Modulates Inter-Subject Correlation of Neural Responses
por: DeGuzman, Paul, et al.
Publicado: (2020) -
Inter-subject correlations of EEG reflect subjective arousal and acoustic features of music
por: Ueno, Fuyu, et al.
Publicado: (2023)