Cargando…
SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species
A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resource...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606164/ https://www.ncbi.nlm.nih.gov/pubmed/23533580 http://dx.doi.org/10.1371/journal.pone.0058068 |
_version_ | 1782263957233336320 |
---|---|
author | Oliver, Rebekah E. Tinker, Nicholas A. Lazo, Gerard R. Chao, Shiaoman Jellen, Eric N. Carson, Martin L. Rines, Howard W. Obert, Donald E. Lutz, Joseph D. Shackelford, Irene Korol, Abraham B. Wight, Charlene P. Gardner, Kyle M. Hattori, Jiro Beattie, Aaron D. Bjørnstad, Åsmund Bonman, J. Michael Jannink, Jean-Luc Sorrells, Mark E. Brown-Guedira, Gina L. Mitchell Fetch, Jennifer W. Harrison, Stephen A. Howarth, Catherine J. Ibrahim, Amir Kolb, Frederic L. McMullen, Michael S. Murphy, J. Paul Ohm, Herbert W. Rossnagel, Brian G. Yan, Weikai Miclaus, Kelci J. Hiller, Jordan Maughan, Peter J. Redman Hulse, Rachel R. Anderson, Joseph M. Islamovic, Emir Jackson, Eric W. |
author_facet | Oliver, Rebekah E. Tinker, Nicholas A. Lazo, Gerard R. Chao, Shiaoman Jellen, Eric N. Carson, Martin L. Rines, Howard W. Obert, Donald E. Lutz, Joseph D. Shackelford, Irene Korol, Abraham B. Wight, Charlene P. Gardner, Kyle M. Hattori, Jiro Beattie, Aaron D. Bjørnstad, Åsmund Bonman, J. Michael Jannink, Jean-Luc Sorrells, Mark E. Brown-Guedira, Gina L. Mitchell Fetch, Jennifer W. Harrison, Stephen A. Howarth, Catherine J. Ibrahim, Amir Kolb, Frederic L. McMullen, Michael S. Murphy, J. Paul Ohm, Herbert W. Rossnagel, Brian G. Yan, Weikai Miclaus, Kelci J. Hiller, Jordan Maughan, Peter J. Redman Hulse, Rachel R. Anderson, Joseph M. Islamovic, Emir Jackson, Eric W. |
author_sort | Oliver, Rebekah E. |
collection | PubMed |
description | A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources. |
format | Online Article Text |
id | pubmed-3606164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36061642013-03-26 SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species Oliver, Rebekah E. Tinker, Nicholas A. Lazo, Gerard R. Chao, Shiaoman Jellen, Eric N. Carson, Martin L. Rines, Howard W. Obert, Donald E. Lutz, Joseph D. Shackelford, Irene Korol, Abraham B. Wight, Charlene P. Gardner, Kyle M. Hattori, Jiro Beattie, Aaron D. Bjørnstad, Åsmund Bonman, J. Michael Jannink, Jean-Luc Sorrells, Mark E. Brown-Guedira, Gina L. Mitchell Fetch, Jennifer W. Harrison, Stephen A. Howarth, Catherine J. Ibrahim, Amir Kolb, Frederic L. McMullen, Michael S. Murphy, J. Paul Ohm, Herbert W. Rossnagel, Brian G. Yan, Weikai Miclaus, Kelci J. Hiller, Jordan Maughan, Peter J. Redman Hulse, Rachel R. Anderson, Joseph M. Islamovic, Emir Jackson, Eric W. PLoS One Research Article A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources. Public Library of Science 2013-03-22 /pmc/articles/PMC3606164/ /pubmed/23533580 http://dx.doi.org/10.1371/journal.pone.0058068 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Oliver, Rebekah E. Tinker, Nicholas A. Lazo, Gerard R. Chao, Shiaoman Jellen, Eric N. Carson, Martin L. Rines, Howard W. Obert, Donald E. Lutz, Joseph D. Shackelford, Irene Korol, Abraham B. Wight, Charlene P. Gardner, Kyle M. Hattori, Jiro Beattie, Aaron D. Bjørnstad, Åsmund Bonman, J. Michael Jannink, Jean-Luc Sorrells, Mark E. Brown-Guedira, Gina L. Mitchell Fetch, Jennifer W. Harrison, Stephen A. Howarth, Catherine J. Ibrahim, Amir Kolb, Frederic L. McMullen, Michael S. Murphy, J. Paul Ohm, Herbert W. Rossnagel, Brian G. Yan, Weikai Miclaus, Kelci J. Hiller, Jordan Maughan, Peter J. Redman Hulse, Rachel R. Anderson, Joseph M. Islamovic, Emir Jackson, Eric W. SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title | SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title_full | SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title_fullStr | SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title_full_unstemmed | SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title_short | SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species |
title_sort | snp discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606164/ https://www.ncbi.nlm.nih.gov/pubmed/23533580 http://dx.doi.org/10.1371/journal.pone.0058068 |
work_keys_str_mv | AT oliverrebekahe snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT tinkernicholasa snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT lazogerardr snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT chaoshiaoman snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT jellenericn snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT carsonmartinl snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT rineshowardw snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT obertdonalde snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT lutzjosephd snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT shackelfordirene snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT korolabrahamb snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT wightcharlenep snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT gardnerkylem snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT hattorijiro snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT beattieaarond snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT bjørnstadasmund snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT bonmanjmichael snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT janninkjeanluc snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT sorrellsmarke snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT brownguediraginal snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT mitchellfetchjenniferw snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT harrisonstephena snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT howarthcatherinej snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT ibrahimamir snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT kolbfredericl snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT mcmullenmichaels snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT murphyjpaul snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT ohmherbertw snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT rossnagelbriang snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT yanweikai snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT miclauskelcij snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT hillerjordan snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT maughanpeterj snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT redmanhulserachelr snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT andersonjosephm snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT islamovicemir snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies AT jacksonericw snpdiscoveryandchromosomeanchoringprovidethefirstphysicallyanchoredhexaploidoatmapandrevealsyntenywithmodelspecies |