Cargando…
Genetic variants and their interactions in disease risk prediction – machine learning and network perspectives
A central challenge in systems biology and medical genetics is to understand how interactions among genetic loci contribute to complex phenotypic traits and human diseases. While most studies have so far relied on statistical modeling and association testing procedures, machine learning and predicti...
Autores principales: | Okser, Sebastian, Pahikkala, Tapio, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606427/ https://www.ncbi.nlm.nih.gov/pubmed/23448398 http://dx.doi.org/10.1186/1756-0381-6-5 |
Ejemplares similares
-
Regularized Machine Learning in the Genetic Prediction of Complex Traits
por: Okser, Sebastian, et al.
Publicado: (2014) -
Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations
por: Pahikkala, Tapio, et al.
Publicado: (2012) -
Toward more realistic drug–target interaction predictions
por: Pahikkala, Tapio, et al.
Publicado: (2015) -
Learning with multiple pairwise kernels for drug bioactivity prediction
por: Cichonska, Anna, et al.
Publicado: (2018) -
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects
por: Julkunen, Heli, et al.
Publicado: (2020)