Cargando…
Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers
Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606770/ https://www.ncbi.nlm.nih.gov/pubmed/23533769 http://dx.doi.org/10.1155/2013/374252 |
_version_ | 1782264051887243264 |
---|---|
author | Salmaso, Stefano Caliceti, Paolo |
author_facet | Salmaso, Stefano Caliceti, Paolo |
author_sort | Salmaso, Stefano |
collection | PubMed |
description | Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and disposed into the target tissues where they release the drug. Nanocarriers interact massively with the surrounding environment, namely, endothelium vessels as well as cells and blood proteins. Consequently, they are rapidly removed from the circulation mostly by the mononuclear phagocyte system. In order to endow nanosystems with long circulation properties, new technologies aimed at the surface modification of their physicochemical features have been developed. In particular, stealth nanocarriers can be obtained by polymeric coating. In this paper, the basic concept underlining the “stealth” properties of drug nanocarriers, the parameters influencing the polymer coating performance in terms of opsonins/macrophages interaction with the colloid surface, the most commonly used materials for the coating process and the outcomes of this peculiar procedure are thoroughly discussed. |
format | Online Article Text |
id | pubmed-3606770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-36067702013-03-26 Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers Salmaso, Stefano Caliceti, Paolo J Drug Deliv Review Article Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and disposed into the target tissues where they release the drug. Nanocarriers interact massively with the surrounding environment, namely, endothelium vessels as well as cells and blood proteins. Consequently, they are rapidly removed from the circulation mostly by the mononuclear phagocyte system. In order to endow nanosystems with long circulation properties, new technologies aimed at the surface modification of their physicochemical features have been developed. In particular, stealth nanocarriers can be obtained by polymeric coating. In this paper, the basic concept underlining the “stealth” properties of drug nanocarriers, the parameters influencing the polymer coating performance in terms of opsonins/macrophages interaction with the colloid surface, the most commonly used materials for the coating process and the outcomes of this peculiar procedure are thoroughly discussed. Hindawi Publishing Corporation 2013 2013-03-07 /pmc/articles/PMC3606770/ /pubmed/23533769 http://dx.doi.org/10.1155/2013/374252 Text en Copyright © 2013 S. Salmaso and P. Caliceti. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Salmaso, Stefano Caliceti, Paolo Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title | Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title_full | Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title_fullStr | Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title_full_unstemmed | Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title_short | Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers |
title_sort | stealth properties to improve therapeutic efficacy of drug nanocarriers |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606770/ https://www.ncbi.nlm.nih.gov/pubmed/23533769 http://dx.doi.org/10.1155/2013/374252 |
work_keys_str_mv | AT salmasostefano stealthpropertiestoimprovetherapeuticefficacyofdrugnanocarriers AT calicetipaolo stealthpropertiestoimprovetherapeuticefficacyofdrugnanocarriers |