Cargando…
Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells
The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607122/ https://www.ncbi.nlm.nih.gov/pubmed/23524906 http://dx.doi.org/10.1038/srep01531 |
_version_ | 1782264081760124928 |
---|---|
author | Bansal, Neha Reynolds, Luke X. MacLachlan, Andrew Lutz, Thierry Ashraf, Raja Shahid Zhang, Weimin Nielsen, Christian B. McCulloch, Iain Rebois, Dylan G. Kirchartz, Thomas Hill, Michael S. Molloy, Kieran C. Nelson, Jenny Haque, Saif A. |
author_facet | Bansal, Neha Reynolds, Luke X. MacLachlan, Andrew Lutz, Thierry Ashraf, Raja Shahid Zhang, Weimin Nielsen, Christian B. McCulloch, Iain Rebois, Dylan G. Kirchartz, Thomas Hill, Michael S. Molloy, Kieran C. Nelson, Jenny Haque, Saif A. |
author_sort | Bansal, Neha |
collection | PubMed |
description | The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. |
format | Online Article Text |
id | pubmed-3607122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36071222013-03-25 Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells Bansal, Neha Reynolds, Luke X. MacLachlan, Andrew Lutz, Thierry Ashraf, Raja Shahid Zhang, Weimin Nielsen, Christian B. McCulloch, Iain Rebois, Dylan G. Kirchartz, Thomas Hill, Michael S. Molloy, Kieran C. Nelson, Jenny Haque, Saif A. Sci Rep Article The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. Nature Publishing Group 2013-03-25 /pmc/articles/PMC3607122/ /pubmed/23524906 http://dx.doi.org/10.1038/srep01531 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Article Bansal, Neha Reynolds, Luke X. MacLachlan, Andrew Lutz, Thierry Ashraf, Raja Shahid Zhang, Weimin Nielsen, Christian B. McCulloch, Iain Rebois, Dylan G. Kirchartz, Thomas Hill, Michael S. Molloy, Kieran C. Nelson, Jenny Haque, Saif A. Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title | Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title_full | Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title_fullStr | Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title_full_unstemmed | Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title_short | Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells |
title_sort | influence of crystallinity and energetics on charge separation in polymer–inorganic nanocomposite films for solar cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607122/ https://www.ncbi.nlm.nih.gov/pubmed/23524906 http://dx.doi.org/10.1038/srep01531 |
work_keys_str_mv | AT bansalneha influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT reynoldslukex influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT maclachlanandrew influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT lutzthierry influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT ashrafrajashahid influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT zhangweimin influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT nielsenchristianb influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT mccullochiain influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT reboisdylang influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT kirchartzthomas influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT hillmichaels influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT molloykieranc influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT nelsonjenny influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells AT haquesaifa influenceofcrystallinityandenergeticsonchargeseparationinpolymerinorganicnanocompositefilmsforsolarcells |