Cargando…
Inferring network properties of cortical neurons with synaptic coupling and parameter dispersion
Computational models at different space-time scales allow us to understand the fundamental mechanisms that govern neural processes and relate uniquely these processes to neuroscience data. In this work, we propose a novel neurocomputational unit (a mesoscopic model which tell us about the interactio...
Autores principales: | Roy, Dipanjan, Jirsa, Viktor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607799/ https://www.ncbi.nlm.nih.gov/pubmed/23533147 http://dx.doi.org/10.3389/fncom.2013.00020 |
Ejemplares similares
-
Cross-frequency coupling in real and virtual brain networks
por: Jirsa, Viktor, et al.
Publicado: (2013) -
Bayesian Inference of Synaptic Quantal Parameters from Correlated Vesicle Release
por: Bird, Alex D., et al.
Publicado: (2016) -
Inferring Single Neuron Properties in Conductance Based Balanced Networks
por: Pool, Román Rossi, et al.
Publicado: (2011) -
Inferring Network Dynamics and Neuron Properties from Population Recordings
por: Linaro, Daniele, et al.
Publicado: (2011) -
Task-Related Synaptic Changes Localized to Small Neuronal Population in Recurrent Neural Network Cortical Models
por: Kuroki, Satoshi, et al.
Publicado: (2018)