Cargando…
Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment
BACKGROUND: Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progress...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607842/ https://www.ncbi.nlm.nih.gov/pubmed/23506434 http://dx.doi.org/10.1186/1754-6834-6-38 |
_version_ | 1782264151677075456 |
---|---|
author | Wong, Mabel Ting Zhang, Dong Li, Jun Hui, Raymond Kin Hi Tun, Hein Min Brar, Manreetpal Singh Park, Tae-Jin Chen, Yinguang Leung, Frederick C |
author_facet | Wong, Mabel Ting Zhang, Dong Li, Jun Hui, Raymond Kin Hi Tun, Hein Min Brar, Manreetpal Singh Park, Tae-Jin Chen, Yinguang Leung, Frederick C |
author_sort | Wong, Mabel Ting |
collection | PubMed |
description | BACKGROUND: Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). RESULTS: Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. CONCLUSIONS: This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future. |
format | Online Article Text |
id | pubmed-3607842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36078422013-03-27 Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment Wong, Mabel Ting Zhang, Dong Li, Jun Hui, Raymond Kin Hi Tun, Hein Min Brar, Manreetpal Singh Park, Tae-Jin Chen, Yinguang Leung, Frederick C Biotechnol Biofuels Research BACKGROUND: Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). RESULTS: Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. CONCLUSIONS: This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future. BioMed Central 2013-03-19 /pmc/articles/PMC3607842/ /pubmed/23506434 http://dx.doi.org/10.1186/1754-6834-6-38 Text en Copyright ©2013 Wong et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wong, Mabel Ting Zhang, Dong Li, Jun Hui, Raymond Kin Hi Tun, Hein Min Brar, Manreetpal Singh Park, Tae-Jin Chen, Yinguang Leung, Frederick C Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title | Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title_full | Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title_fullStr | Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title_full_unstemmed | Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title_short | Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment |
title_sort | towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after ph 10 pretreatment |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607842/ https://www.ncbi.nlm.nih.gov/pubmed/23506434 http://dx.doi.org/10.1186/1754-6834-6-38 |
work_keys_str_mv | AT wongmabelting towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT zhangdong towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT lijun towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT huiraymondkinhi towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT tunheinmin towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT brarmanreetpalsingh towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT parktaejin towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT chenyinguang towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment AT leungfrederickc towardsametagenomicunderstandingonenhancedbiomethaneproductionfromwasteactivatedsludgeafterph10pretreatment |