Cargando…
Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
The amount of metagenomic data is growing rapidly while the computational methods for metagenome analysis are still in their infancy. It is important to develop novel statistical learning tools for the prediction of associations between bacterial communities and disease phenotypes and for the detect...
Autores principales: | Liu, Zhenqiu, Chen, Dechang, Sheng, Li, Liu, Amy Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608598/ https://www.ncbi.nlm.nih.gov/pubmed/23555553 http://dx.doi.org/10.1371/journal.pone.0053253 |
Ejemplares similares
-
Correction: Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
por: Liu, Zhenqiu, et al.
Publicado: (2014) -
Network construction and structure detection with metagenomic count data
por: Liu, Zhenqiu, et al.
Publicado: (2015) -
Sparse generalized linear model with L(0) approximation for feature selection and prediction with big omics data
por: Liu, Zhenqiu, et al.
Publicado: (2017) -
Selecting Genes by Test Statistics
por: Chen, Dechang, et al.
Publicado: (2005) -
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005)