Cargando…

Good Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad Exemplars but Not Greater BOLD Activity

Within the range of images that we might categorize as a “beach”, for example, some will be more representative of that category than others. Here we first confirmed that humans could categorize “good” exemplars better than “bad” exemplars of six scene categories and then explored whether brain regi...

Descripción completa

Detalles Bibliográficos
Autores principales: Torralbo, Ana, Walther, Dirk B., Chai, Barry, Caddigan, Eamon, Fei-Fei, Li, Beck, Diane M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608650/
https://www.ncbi.nlm.nih.gov/pubmed/23555588
http://dx.doi.org/10.1371/journal.pone.0058594
Descripción
Sumario:Within the range of images that we might categorize as a “beach”, for example, some will be more representative of that category than others. Here we first confirmed that humans could categorize “good” exemplars better than “bad” exemplars of six scene categories and then explored whether brain regions previously implicated in natural scene categorization showed a similar sensitivity to how well an image exemplifies a category. In a behavioral experiment participants were more accurate and faster at categorizing good than bad exemplars of natural scenes. In an fMRI experiment participants passively viewed blocks of good or bad exemplars from the same six categories. A multi-voxel pattern classifier trained to discriminate among category blocks showed higher decoding accuracy for good than bad exemplars in the PPA, RSC and V1. This difference in decoding accuracy cannot be explained by differences in overall BOLD signal, as average BOLD activity was either equivalent or higher for bad than good scenes in these areas. These results provide further evidence that V1, RSC and the PPA not only contain information relevant for natural scene categorization, but their activity patterns mirror the fundamentally graded nature of human categories. Analysis of the image statistics of our good and bad exemplars shows that variability in low-level features and image structure is higher among bad than good exemplars. A simulation of our neuroimaging experiment suggests that such a difference in variance could account for the observed differences in decoding accuracy. These results are consistent with both low-level models of scene categorization and models that build categories around a prototype.