Cargando…

Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries

BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear repres...

Descripción completa

Detalles Bibliográficos
Autores principales: Terrier, Philippe, Luthi, François, Dériaz, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608952/
https://www.ncbi.nlm.nih.gov/pubmed/23496924
http://dx.doi.org/10.1186/1471-2474-14-94
_version_ 1782264293718228992
author Terrier, Philippe
Luthi, François
Dériaz, Olivier
author_facet Terrier, Philippe
Luthi, François
Dériaz, Olivier
author_sort Terrier, Philippe
collection PubMed
description BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear represents an important therapeutic tool during the rehabilitation process. Local Dynamic Stability (LDS) is the ability of locomotor system to maintain continuous walking by accommodating small perturbations that occur naturally during walking. Because it reflects the degree of control over the gait, LDS has been advocated as a relevant indicator for evaluating different conditions and pathologies. The aim of this study was to analyze changes in LDS induced by orthopaedic shoes in patients with persistent foot and ankle injuries. We hypothesised that footwear adaptation might help patients to improve gait control, which could lead to higher LDS: METHODS: Twenty-five middle-aged inpatients (5 females, 20 males) participated in the study. They were treated for chronic post-traumatic disabilities following ankle and/or foot fractures in a Swiss rehabilitation clinic. During their stay, included inpatients received orthopaedic shoes with custom-made orthoses (insoles). They performed two 30s walking trials with standard shoes and two 30s trials with orthopaedic shoes. A triaxial motion sensor recorded 3D accelerations at the lower back level. LDS was assessed by computing divergence exponents in the acceleration signals (maximal Lyapunov exponents). Pain was evaluated with Visual Analogue Scale (VAS). LDS and pain differences between the trials with standard shoes and the trials with orthopaedic shoes were assessed. RESULTS: Orthopaedic shoes significantly improved LDS in the three axes (medio-lateral: 10% relative change, paired t-test p < 0.001; vertical: 9%, p = 0.03; antero-posterior: 7%, p = 0.04). A significant decrease in pain level (VAS score -29%) was observed. CONCLUSIONS: Footwear adaptation led to pain relief and to improved foot & ankle proprioception. It is likely that that enhancement allows patients to better control foot placement. As a result, higher dynamic stability has been observed. LDS seems therefore a valuable index that could be used in early evaluation of footwear outcome in clinical settings.
format Online
Article
Text
id pubmed-3608952
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36089522013-03-28 Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries Terrier, Philippe Luthi, François Dériaz, Olivier BMC Musculoskelet Disord Research Article BACKGROUND: Complex foot and ankle fractures, such as calcaneum fractures or Lisfranc dislocations, are often associated with a poor outcome, especially in terms of gait capacity. Indeed, degenerative changes often lead to chronic pain and chronic functional limitations. Prescription footwear represents an important therapeutic tool during the rehabilitation process. Local Dynamic Stability (LDS) is the ability of locomotor system to maintain continuous walking by accommodating small perturbations that occur naturally during walking. Because it reflects the degree of control over the gait, LDS has been advocated as a relevant indicator for evaluating different conditions and pathologies. The aim of this study was to analyze changes in LDS induced by orthopaedic shoes in patients with persistent foot and ankle injuries. We hypothesised that footwear adaptation might help patients to improve gait control, which could lead to higher LDS: METHODS: Twenty-five middle-aged inpatients (5 females, 20 males) participated in the study. They were treated for chronic post-traumatic disabilities following ankle and/or foot fractures in a Swiss rehabilitation clinic. During their stay, included inpatients received orthopaedic shoes with custom-made orthoses (insoles). They performed two 30s walking trials with standard shoes and two 30s trials with orthopaedic shoes. A triaxial motion sensor recorded 3D accelerations at the lower back level. LDS was assessed by computing divergence exponents in the acceleration signals (maximal Lyapunov exponents). Pain was evaluated with Visual Analogue Scale (VAS). LDS and pain differences between the trials with standard shoes and the trials with orthopaedic shoes were assessed. RESULTS: Orthopaedic shoes significantly improved LDS in the three axes (medio-lateral: 10% relative change, paired t-test p < 0.001; vertical: 9%, p = 0.03; antero-posterior: 7%, p = 0.04). A significant decrease in pain level (VAS score -29%) was observed. CONCLUSIONS: Footwear adaptation led to pain relief and to improved foot & ankle proprioception. It is likely that that enhancement allows patients to better control foot placement. As a result, higher dynamic stability has been observed. LDS seems therefore a valuable index that could be used in early evaluation of footwear outcome in clinical settings. BioMed Central 2013-03-14 /pmc/articles/PMC3608952/ /pubmed/23496924 http://dx.doi.org/10.1186/1471-2474-14-94 Text en Copyright ©2013 Terrier et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Terrier, Philippe
Luthi, François
Dériaz, Olivier
Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title_full Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title_fullStr Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title_full_unstemmed Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title_short Do orthopaedic shoes improve local dynamic stability of gait? An observational study in patients with chronic foot and ankle injuries
title_sort do orthopaedic shoes improve local dynamic stability of gait? an observational study in patients with chronic foot and ankle injuries
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608952/
https://www.ncbi.nlm.nih.gov/pubmed/23496924
http://dx.doi.org/10.1186/1471-2474-14-94
work_keys_str_mv AT terrierphilippe doorthopaedicshoesimprovelocaldynamicstabilityofgaitanobservationalstudyinpatientswithchronicfootandankleinjuries
AT luthifrancois doorthopaedicshoesimprovelocaldynamicstabilityofgaitanobservationalstudyinpatientswithchronicfootandankleinjuries
AT deriazolivier doorthopaedicshoesimprovelocaldynamicstabilityofgaitanobservationalstudyinpatientswithchronicfootandankleinjuries