Cargando…
Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling
BACKGROUND: Culture-independent phylogenetic analysis of 16S ribosomal RNA (rRNA) gene sequences has emerged as an incisive method of profiling bacteria present in a specimen. Currently, multiple techniques are available to enumerate the abundance of bacterial taxa in specimens, including the Sanger...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608994/ https://www.ncbi.nlm.nih.gov/pubmed/23497007 http://dx.doi.org/10.1186/1471-2105-14-79 |
_version_ | 1782264300196331520 |
---|---|
author | Wu, Xiao Berkow, Kathryn Frank, Daniel N Li, Ellen Gulati, Ajay S Zhu, Wei |
author_facet | Wu, Xiao Berkow, Kathryn Frank, Daniel N Li, Ellen Gulati, Ajay S Zhu, Wei |
author_sort | Wu, Xiao |
collection | PubMed |
description | BACKGROUND: Culture-independent phylogenetic analysis of 16S ribosomal RNA (rRNA) gene sequences has emerged as an incisive method of profiling bacteria present in a specimen. Currently, multiple techniques are available to enumerate the abundance of bacterial taxa in specimens, including the Sanger sequencing, the ‘next generation’ pyrosequencing, microarrays, quantitative PCR, and the rapidly emerging, third generation sequencing, and fourth generation sequencing methods. An efficient statistical tool is in urgent need for the followings tasks: (1) to compare the agreement between these measurement platforms, (2) to select the most reliable platform(s), and (3) to combine different platforms of complementary strengths, for a unified analysis. RESULTS: We present the latent variable structural equation modeling (SEM) as a novel statistical application for the comparative analysis of measurement platforms. The latent variable SEM model treats the true (unknown) relative frequency of a given bacterial taxon in a specimen as the latent (unobserved) variable and estimates the reliabilities of, and similarities between, different measurement platforms, and subsequently weighs those measurements optimally for a unified analysis of the microbiome composition. The latent variable SEM contains the repeated measures ANOVA (both the univariate and the multivariate models) as special cases and, as a more general and realistic modeling approach, yields superior goodness-of-fit and more reliable analysis results, as demonstrated by a microbiome study of the human inflammatory bowel diseases. CONCLUSIONS: Given the rapid evolution of modern biotechnologies, the measurement platform comparison, selection and combination tasks are here to stay and to grow – and the latent variable SEM method is readily applicable to any other biological settings, aside from the microbiome study presented here. |
format | Online Article Text |
id | pubmed-3608994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36089942013-04-01 Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling Wu, Xiao Berkow, Kathryn Frank, Daniel N Li, Ellen Gulati, Ajay S Zhu, Wei BMC Bioinformatics Research Article BACKGROUND: Culture-independent phylogenetic analysis of 16S ribosomal RNA (rRNA) gene sequences has emerged as an incisive method of profiling bacteria present in a specimen. Currently, multiple techniques are available to enumerate the abundance of bacterial taxa in specimens, including the Sanger sequencing, the ‘next generation’ pyrosequencing, microarrays, quantitative PCR, and the rapidly emerging, third generation sequencing, and fourth generation sequencing methods. An efficient statistical tool is in urgent need for the followings tasks: (1) to compare the agreement between these measurement platforms, (2) to select the most reliable platform(s), and (3) to combine different platforms of complementary strengths, for a unified analysis. RESULTS: We present the latent variable structural equation modeling (SEM) as a novel statistical application for the comparative analysis of measurement platforms. The latent variable SEM model treats the true (unknown) relative frequency of a given bacterial taxon in a specimen as the latent (unobserved) variable and estimates the reliabilities of, and similarities between, different measurement platforms, and subsequently weighs those measurements optimally for a unified analysis of the microbiome composition. The latent variable SEM contains the repeated measures ANOVA (both the univariate and the multivariate models) as special cases and, as a more general and realistic modeling approach, yields superior goodness-of-fit and more reliable analysis results, as demonstrated by a microbiome study of the human inflammatory bowel diseases. CONCLUSIONS: Given the rapid evolution of modern biotechnologies, the measurement platform comparison, selection and combination tasks are here to stay and to grow – and the latent variable SEM method is readily applicable to any other biological settings, aside from the microbiome study presented here. BioMed Central 2013-03-05 /pmc/articles/PMC3608994/ /pubmed/23497007 http://dx.doi.org/10.1186/1471-2105-14-79 Text en Copyright ©2013 Wu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wu, Xiao Berkow, Kathryn Frank, Daniel N Li, Ellen Gulati, Ajay S Zhu, Wei Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title | Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title_full | Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title_fullStr | Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title_full_unstemmed | Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title_short | Comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
title_sort | comparative analysis of microbiome measurement platforms using latent variable structural equation modeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608994/ https://www.ncbi.nlm.nih.gov/pubmed/23497007 http://dx.doi.org/10.1186/1471-2105-14-79 |
work_keys_str_mv | AT wuxiao comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling AT berkowkathryn comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling AT frankdanieln comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling AT liellen comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling AT gulatiajays comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling AT zhuwei comparativeanalysisofmicrobiomemeasurementplatformsusinglatentvariablestructuralequationmodeling |