Cargando…

Observing fermionic statistics with photons in arbitrary processes

Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This app...

Descripción completa

Detalles Bibliográficos
Autores principales: Matthews, Jonathan C. F., Poulios, Konstantinos, Meinecke, Jasmin D. A., Politi, Alberto, Peruzzo, Alberto, Ismail, Nur, Wörhoff, Kerstin, Thompson, Mark G., O'Brien, Jeremy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609020/
https://www.ncbi.nlm.nih.gov/pubmed/23531788
http://dx.doi.org/10.1038/srep01539
_version_ 1782264304637050880
author Matthews, Jonathan C. F.
Poulios, Konstantinos
Meinecke, Jasmin D. A.
Politi, Alberto
Peruzzo, Alberto
Ismail, Nur
Wörhoff, Kerstin
Thompson, Mark G.
O'Brien, Jeremy L.
author_facet Matthews, Jonathan C. F.
Poulios, Konstantinos
Meinecke, Jasmin D. A.
Politi, Alberto
Peruzzo, Alberto
Ismail, Nur
Wörhoff, Kerstin
Thompson, Mark G.
O'Brien, Jeremy L.
author_sort Matthews, Jonathan C. F.
collection PubMed
description Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here.
format Online
Article
Text
id pubmed-3609020
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-36090202013-04-04 Observing fermionic statistics with photons in arbitrary processes Matthews, Jonathan C. F. Poulios, Konstantinos Meinecke, Jasmin D. A. Politi, Alberto Peruzzo, Alberto Ismail, Nur Wörhoff, Kerstin Thompson, Mark G. O'Brien, Jeremy L. Sci Rep Article Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. Nature Publishing Group 2013-03-27 /pmc/articles/PMC3609020/ /pubmed/23531788 http://dx.doi.org/10.1038/srep01539 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Matthews, Jonathan C. F.
Poulios, Konstantinos
Meinecke, Jasmin D. A.
Politi, Alberto
Peruzzo, Alberto
Ismail, Nur
Wörhoff, Kerstin
Thompson, Mark G.
O'Brien, Jeremy L.
Observing fermionic statistics with photons in arbitrary processes
title Observing fermionic statistics with photons in arbitrary processes
title_full Observing fermionic statistics with photons in arbitrary processes
title_fullStr Observing fermionic statistics with photons in arbitrary processes
title_full_unstemmed Observing fermionic statistics with photons in arbitrary processes
title_short Observing fermionic statistics with photons in arbitrary processes
title_sort observing fermionic statistics with photons in arbitrary processes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609020/
https://www.ncbi.nlm.nih.gov/pubmed/23531788
http://dx.doi.org/10.1038/srep01539
work_keys_str_mv AT matthewsjonathancf observingfermionicstatisticswithphotonsinarbitraryprocesses
AT poulioskonstantinos observingfermionicstatisticswithphotonsinarbitraryprocesses
AT meineckejasminda observingfermionicstatisticswithphotonsinarbitraryprocesses
AT politialberto observingfermionicstatisticswithphotonsinarbitraryprocesses
AT peruzzoalberto observingfermionicstatisticswithphotonsinarbitraryprocesses
AT ismailnur observingfermionicstatisticswithphotonsinarbitraryprocesses
AT worhoffkerstin observingfermionicstatisticswithphotonsinarbitraryprocesses
AT thompsonmarkg observingfermionicstatisticswithphotonsinarbitraryprocesses
AT obrienjeremyl observingfermionicstatisticswithphotonsinarbitraryprocesses