Cargando…
Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians: Relationship to adiponectin and parameters of metabolic syndrome
OBJECTIVE: UCP2 is a mitochondrial membrane transporter expressed in white adipose tissue and involved in regulation of energy balance. In this present study, we examined the depot specific comparison of UCP2 gene expression in different metabolic states, in order to explore the potential role of UC...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609085/ https://www.ncbi.nlm.nih.gov/pubmed/23700519 http://dx.doi.org/10.4161/adip.19671 |
Sumario: | OBJECTIVE: UCP2 is a mitochondrial membrane transporter expressed in white adipose tissue and involved in regulation of energy balance. In this present study, we examined the depot specific comparison of UCP2 gene expression in different metabolic states, in order to explore the potential role of UCP2 in human obesity and diabetes. We also determined UCP2’s association with adiponectin and insulin resistance with different parameters of the metabolic syndrome. METHODS: Subcutaneous adipose tissue (SAT) and omental adipose tissues (OAT) were obtained from 69 subjects, including 23 non-obese controls, 26 obese and 20 obese T2DM patients. Metabolic syndrome and other clinical features were studied. Adiponectin and UCP2 gene expression was quantitated by Real Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS: UCP2 gene expression was significantly reduced in obese and diabetic patients compared with controls. Interestingly, we found that UCP2 gene expression was reduced more in omental fat compared with subcutaneous fat and this effect was observed only in males but not in females. Partial correlation analysis showed significant association with the obesity parameters waist circumference, insulin and HOMA-IR, the lipid parameter triglyceride and the adipokine adiponectin. CONCLUSION: Reduced UCP2 gene expression in obese and diabetic patients and its association with obesity parameters and HOMA-IR confirms its role as a candidate gene in the study of obesity and diabetes in our population. Also, its association with triglycerides implicates its role in lipid metabolism. An association between adiponectin and UCP2 gene expression may provide us with an innovative therapeutic strategy to prevent obesity related diseases, like diabetes and CVD. |
---|