Cargando…
Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales
For some types of visuo-motor transformations like large visuo-motor rotations or the complex transformation of a sliding first-order lever, distinct adaptive processes have been hypothesized that produce a rapid, discrete approximation of the transformation and a slow, graded fine tuning, respectiv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609823/ https://www.ncbi.nlm.nih.gov/pubmed/23544133 http://dx.doi.org/10.1371/journal.pone.0060196 |
_version_ | 1782264371772129280 |
---|---|
author | Sülzenbrück, Sandra Heuer, Herbert |
author_facet | Sülzenbrück, Sandra Heuer, Herbert |
author_sort | Sülzenbrück, Sandra |
collection | PubMed |
description | For some types of visuo-motor transformations like large visuo-motor rotations or the complex transformation of a sliding first-order lever, distinct adaptive processes have been hypothesized that produce a rapid, discrete approximation of the transformation and a slow, graded fine tuning, respectively. Here we investigate whether part-task training of only the second of these processes, namely the fine tuning, transfers to the subsequent performance in a condition with the full transformation of the sliding first-order lever. Therefore, we compared performance of three groups with different practice conditions during transfer to the full transformation. While two groups only practiced the fine tuning without the right-left inversion of the lever prior to transfer, a third group practiced the full lever transformation. Our results show a positive, but less than perfect transfer of the isolated practice of the fine tuning on performance with the full transformation. For the fine tuning itself, transfer was not reliably different from being perfect. The observation that the fine tuning can be acquired separately and added to the later adaptation to the left-right inversion of the lever supports the notion that these slow and fast processes progress rather independently. The additional finding that the preceding acquisition of the fine tuning also facilitates the subsequent rapid process could be due to generalized learning-to-learn or to a more precise assignment of movement errors to the process from which they originate. |
format | Online Article Text |
id | pubmed-3609823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36098232013-03-29 Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales Sülzenbrück, Sandra Heuer, Herbert PLoS One Research Article For some types of visuo-motor transformations like large visuo-motor rotations or the complex transformation of a sliding first-order lever, distinct adaptive processes have been hypothesized that produce a rapid, discrete approximation of the transformation and a slow, graded fine tuning, respectively. Here we investigate whether part-task training of only the second of these processes, namely the fine tuning, transfers to the subsequent performance in a condition with the full transformation of the sliding first-order lever. Therefore, we compared performance of three groups with different practice conditions during transfer to the full transformation. While two groups only practiced the fine tuning without the right-left inversion of the lever prior to transfer, a third group practiced the full lever transformation. Our results show a positive, but less than perfect transfer of the isolated practice of the fine tuning on performance with the full transformation. For the fine tuning itself, transfer was not reliably different from being perfect. The observation that the fine tuning can be acquired separately and added to the later adaptation to the left-right inversion of the lever supports the notion that these slow and fast processes progress rather independently. The additional finding that the preceding acquisition of the fine tuning also facilitates the subsequent rapid process could be due to generalized learning-to-learn or to a more precise assignment of movement errors to the process from which they originate. Public Library of Science 2013-03-27 /pmc/articles/PMC3609823/ /pubmed/23544133 http://dx.doi.org/10.1371/journal.pone.0060196 Text en © 2013 Sülzenbrück, Heuer http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Sülzenbrück, Sandra Heuer, Herbert Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title | Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title_full | Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title_fullStr | Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title_full_unstemmed | Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title_short | Effective Part-Task Training as Evidence of Distinct Adaptive Processes with Different Time Scales |
title_sort | effective part-task training as evidence of distinct adaptive processes with different time scales |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609823/ https://www.ncbi.nlm.nih.gov/pubmed/23544133 http://dx.doi.org/10.1371/journal.pone.0060196 |
work_keys_str_mv | AT sulzenbrucksandra effectiveparttasktrainingasevidenceofdistinctadaptiveprocesseswithdifferenttimescales AT heuerherbert effectiveparttasktrainingasevidenceofdistinctadaptiveprocesseswithdifferenttimescales |