Cargando…

Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging

We previously reported that tumor mitochondrial redox state and its heterogeneity distinguished between the aggressive and the indolent breast cancer xenografts, suggesting novel metabolic indices as biomarkers for predicting tumor metastatic potential. Additionally, we reported that the identified...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, He N, Zheng, Gang, Tchou, Julia, Nioka, Shoko, Li, Lin Z
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing AG 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610024/
https://www.ncbi.nlm.nih.gov/pubmed/23543813
http://dx.doi.org/10.1186/2193-1801-2-73
_version_ 1782264391331217408
author Xu, He N
Zheng, Gang
Tchou, Julia
Nioka, Shoko
Li, Lin Z
author_facet Xu, He N
Zheng, Gang
Tchou, Julia
Nioka, Shoko
Li, Lin Z
author_sort Xu, He N
collection PubMed
description We previously reported that tumor mitochondrial redox state and its heterogeneity distinguished between the aggressive and the indolent breast cancer xenografts, suggesting novel metabolic indices as biomarkers for predicting tumor metastatic potential. Additionally, we reported that the identified redox biomarkers successfully differentiated between the normal breast tissue and the cancerous breast tissue from breast cancer patients. The aim of the present study was to further characterize intratumor heterogeneity by its distribution of mitochondrial redox state and glucose uptake pattern in tumor xenografts and to further investigate the metabolic heterogeneity of the clinical biopsy samples. We employed the Chance redox scanner, a multi-section cryogenic fluorescence imager to simultaneously image the intratumor heterogeneity in the mitochondrial redox state and glucose uptake at a high spatial resolution (down to 50 × 50 × 20 μm(3)). The mitochondrial redox state was determined by the ratio of the intrinsic fluorescence signals from reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp including FAD, i.e., flavin adenine dinucleotide), and the glucose uptake was measured using a near-infrared fluorescent glucose-analogue, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG). Significant inter- and intratumor metabolic heterogeneity were observed from our imaging data on various types of breast cancer xenografts. The patterns and degrees of heterogeneity of mitochondrial redox state appeared to relate to tumor size and metastatic potential. The glucose uptake was also heterogeneous and generally higher in tumor peripheries. The oxidized and reduced regions mostly corresponded with the lower and the higher pyro-2DG uptake, respectively. However, there were some regions where the glucose uptake did not correlate with the redox indices. Pronounced glucose uptake and high NADH were observed in certain localized areas within the tumor necrotic regions, indicative of the existence of viable cells which was also supported by the H&E staining. Significant heterogeneity of the redox state indices was also observed in clinical specimens of breast cancer patients. As abnormal metabolism including the Warburg effect (high glycolysis) plays important roles in cancer transformation and progression, our observations that reveal the 3D intratumor metabolic heterogeneity as a characteristic feature of breast tumors are of great importance for understanding cancer biology and developing diagnostic and therapeutic methods.
format Online
Article
Text
id pubmed-3610024
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Springer International Publishing AG
record_format MEDLINE/PubMed
spelling pubmed-36100242013-03-28 Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging Xu, He N Zheng, Gang Tchou, Julia Nioka, Shoko Li, Lin Z Springerplus Research We previously reported that tumor mitochondrial redox state and its heterogeneity distinguished between the aggressive and the indolent breast cancer xenografts, suggesting novel metabolic indices as biomarkers for predicting tumor metastatic potential. Additionally, we reported that the identified redox biomarkers successfully differentiated between the normal breast tissue and the cancerous breast tissue from breast cancer patients. The aim of the present study was to further characterize intratumor heterogeneity by its distribution of mitochondrial redox state and glucose uptake pattern in tumor xenografts and to further investigate the metabolic heterogeneity of the clinical biopsy samples. We employed the Chance redox scanner, a multi-section cryogenic fluorescence imager to simultaneously image the intratumor heterogeneity in the mitochondrial redox state and glucose uptake at a high spatial resolution (down to 50 × 50 × 20 μm(3)). The mitochondrial redox state was determined by the ratio of the intrinsic fluorescence signals from reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp including FAD, i.e., flavin adenine dinucleotide), and the glucose uptake was measured using a near-infrared fluorescent glucose-analogue, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG). Significant inter- and intratumor metabolic heterogeneity were observed from our imaging data on various types of breast cancer xenografts. The patterns and degrees of heterogeneity of mitochondrial redox state appeared to relate to tumor size and metastatic potential. The glucose uptake was also heterogeneous and generally higher in tumor peripheries. The oxidized and reduced regions mostly corresponded with the lower and the higher pyro-2DG uptake, respectively. However, there were some regions where the glucose uptake did not correlate with the redox indices. Pronounced glucose uptake and high NADH were observed in certain localized areas within the tumor necrotic regions, indicative of the existence of viable cells which was also supported by the H&E staining. Significant heterogeneity of the redox state indices was also observed in clinical specimens of breast cancer patients. As abnormal metabolism including the Warburg effect (high glycolysis) plays important roles in cancer transformation and progression, our observations that reveal the 3D intratumor metabolic heterogeneity as a characteristic feature of breast tumors are of great importance for understanding cancer biology and developing diagnostic and therapeutic methods. Springer International Publishing AG 2013-02-28 /pmc/articles/PMC3610024/ /pubmed/23543813 http://dx.doi.org/10.1186/2193-1801-2-73 Text en © Xu et al. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Xu, He N
Zheng, Gang
Tchou, Julia
Nioka, Shoko
Li, Lin Z
Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title_full Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title_fullStr Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title_full_unstemmed Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title_short Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging
title_sort characterizing the metabolic heterogeneity in human breast cancer xenografts by 3d high resolution fluorescence imaging
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610024/
https://www.ncbi.nlm.nih.gov/pubmed/23543813
http://dx.doi.org/10.1186/2193-1801-2-73
work_keys_str_mv AT xuhen characterizingthemetabolicheterogeneityinhumanbreastcancerxenograftsby3dhighresolutionfluorescenceimaging
AT zhenggang characterizingthemetabolicheterogeneityinhumanbreastcancerxenograftsby3dhighresolutionfluorescenceimaging
AT tchoujulia characterizingthemetabolicheterogeneityinhumanbreastcancerxenograftsby3dhighresolutionfluorescenceimaging
AT niokashoko characterizingthemetabolicheterogeneityinhumanbreastcancerxenograftsby3dhighresolutionfluorescenceimaging
AT lilinz characterizingthemetabolicheterogeneityinhumanbreastcancerxenograftsby3dhighresolutionfluorescenceimaging