Cargando…

CD8(+) T cell activation by murine erythroblasts infected with malaria parasites

Recent studies show that some human malaria parasite species Plasmodium falciparum and P. vivax parasitize erythroblasts; however, the biological and clinical significance of this is unclear. To investigate further, we generated a rodent malaria parasite (P. yoelii 17XNL) expressing GFP-ovalbumin (O...

Descripción completa

Detalles Bibliográficos
Autores principales: Imai, Takashi, Ishida, Hidekazu, Suzue, Kazutomo, Hirai, Makoto, Taniguchi, Tomoyo, Okada, Hiroko, Suzuki, Tomohisa, Shimokawa, Chikako, Hisaeda, Hajime
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610137/
https://www.ncbi.nlm.nih.gov/pubmed/23535896
http://dx.doi.org/10.1038/srep01572
Descripción
Sumario:Recent studies show that some human malaria parasite species Plasmodium falciparum and P. vivax parasitize erythroblasts; however, the biological and clinical significance of this is unclear. To investigate further, we generated a rodent malaria parasite (P. yoelii 17XNL) expressing GFP-ovalbumin (OVA). Its infectivity to erythroblasts was confirmed, and parasitized erythroblasts were capable of initiating malaria infections. Experiments showed that MHC class I molecules were highly expressed on parasitized erythroblasts. As CD8(+) T cells recognize MHC class I and peptide complexes on target cells, and are involved in protection or pathology against malaria, we examined whether erythroblasts are targeted by CD8(+) T cells. Purified non-parasitized erythroblasts pulsed with OVA peptides were recognized by OVA-specific CD8(+) T cells. Crucially, parasitized erythroblasts isolated from GFP-OVA-, but not GFP- infected-mice, activated OT-I CD8(+) T cells, indicating that CD8(+) T cells recognize parasitized erythroblasts in an antigen-specific manner.