Cargando…
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites
Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infec...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610659/ https://www.ncbi.nlm.nih.gov/pubmed/23555272 http://dx.doi.org/10.1371/journal.ppat.1003281 |
_version_ | 1782264485094883328 |
---|---|
author | Misas-Villamil, Johana C. Kolodziejek, Izabella Crabill, Emerson Kaschani, Farnusch Niessen, Sherry Shindo, Takayuki Kaiser, Markus Alfano, James R. van der Hoorn, Renier A. L. |
author_facet | Misas-Villamil, Johana C. Kolodziejek, Izabella Crabill, Emerson Kaschani, Farnusch Niessen, Sherry Shindo, Takayuki Kaiser, Markus Alfano, James R. van der Hoorn, Renier A. L. |
author_sort | Misas-Villamil, Johana C. |
collection | PubMed |
description | Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues. |
format | Online Article Text |
id | pubmed-3610659 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36106592013-04-03 Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites Misas-Villamil, Johana C. Kolodziejek, Izabella Crabill, Emerson Kaschani, Farnusch Niessen, Sherry Shindo, Takayuki Kaiser, Markus Alfano, James R. van der Hoorn, Renier A. L. PLoS Pathog Research Article Infection of plants by bacterial leaf pathogens at wound sites is common in nature. Plants defend wound sites to prevent pathogen invasion, but several pathogens can overcome spatial restriction and enter leaf tissues. The molecular mechanisms used by pathogens to suppress containment at wound infection sites are poorly understood. Here, we studied Pseudomonas syringae strains causing brown spot on bean and blossom blight on pear. These strains exist as epiphytes that can cause disease upon wounding caused by hail, sand storms and frost. We demonstrate that these strains overcome spatial restriction at wound sites by producing syringolin A (SylA), a small molecule proteasome inhibitor. Consequently, SylA-producing strains are able to escape from primary infection sites and colonize adjacent tissues along the vasculature. We found that SylA diffuses from the primary infection site and suppresses acquired resistance in adjacent tissues by blocking signaling by the stress hormone salicylic acid (SA). Thus, SylA diffusion creates a zone of SA-insensitive tissue that is prepared for subsequent colonization. In addition, SylA promotes bacterial motility and suppresses immune responses at the primary infection site. These local immune responses do not affect bacterial growth and were weak compared to effector-triggered immunity. Thus, SylA facilitates colonization from wounding sites by increasing bacterial motility and suppressing SA signaling in adjacent tissues. Public Library of Science 2013-03-28 /pmc/articles/PMC3610659/ /pubmed/23555272 http://dx.doi.org/10.1371/journal.ppat.1003281 Text en © 2013 Misas-Villamil et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Misas-Villamil, Johana C. Kolodziejek, Izabella Crabill, Emerson Kaschani, Farnusch Niessen, Sherry Shindo, Takayuki Kaiser, Markus Alfano, James R. van der Hoorn, Renier A. L. Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title |
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title_full |
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title_fullStr |
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title_full_unstemmed |
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title_short |
Pseudomonas syringae pv. syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites |
title_sort | pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin a to colonize from wound infection sites |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610659/ https://www.ncbi.nlm.nih.gov/pubmed/23555272 http://dx.doi.org/10.1371/journal.ppat.1003281 |
work_keys_str_mv | AT misasvillamiljohanac pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT kolodziejekizabella pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT crabillemerson pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT kaschanifarnusch pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT niessensherry pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT shindotakayuki pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT kaisermarkus pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT alfanojamesr pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites AT vanderhoornrenieral pseudomonassyringaepvsyringaeusesproteasomeinhibitorsyringolinatocolonizefromwoundinfectionsites |