Cargando…
A Time-Series Analysis of the 20th Century Climate Simulations Produced for the IPCC’s Fourth Assessment Report
In this paper evidence of anthropogenic influence over the warming of the 20th century is presented and the debate regarding the time-series properties of global temperatures is addressed in depth. The 20th century global temperature simulations produced for the Intergovernmental Panel on Climate Ch...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610752/ https://www.ncbi.nlm.nih.gov/pubmed/23555866 http://dx.doi.org/10.1371/journal.pone.0060017 |
Sumario: | In this paper evidence of anthropogenic influence over the warming of the 20th century is presented and the debate regarding the time-series properties of global temperatures is addressed in depth. The 20th century global temperature simulations produced for the Intergovernmental Panel on Climate Change’s Fourth Assessment Report and a set of the radiative forcing series used to drive them are analyzed using modern econometric techniques. Results show that both temperatures and radiative forcing series share similar time-series properties and a common nonlinear secular movement. This long-term co-movement is characterized by the existence of time-ordered breaks in the slope of their trend functions. The evidence presented in this paper suggests that while natural forcing factors may help explain the warming of the first part of the century, anthropogenic forcing has been its main driver since the 1970’s. In terms of Article 2 of the United Nations Framework Convention on Climate Change, significant anthropogenic interference with the climate system has already occurred and the current climate models are capable of accurately simulating the response of the climate system, even if it consists in a rapid or abrupt change, to changes in external forcing factors. This paper presents a new methodological approach for conducting time-series based attribution studies. |
---|