Cargando…
When Celibacy Matters: Incorporating Non-Breeders Improves Demographic Parameter Estimates
In long-lived species only a fraction of a population breeds at a given time. Non-breeders can represent more than half of adult individuals, calling in doubt the relevance of estimating demographic parameters from the sole breeders. Here we demonstrate the importance of considering observable non-b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612038/ https://www.ncbi.nlm.nih.gov/pubmed/23555965 http://dx.doi.org/10.1371/journal.pone.0060389 |
Sumario: | In long-lived species only a fraction of a population breeds at a given time. Non-breeders can represent more than half of adult individuals, calling in doubt the relevance of estimating demographic parameters from the sole breeders. Here we demonstrate the importance of considering observable non-breeders to estimate reliable demographic traits: survival, return, breeding, hatching and fledging probabilities. We study the long-lived quasi-biennial breeding wandering albatross (Diomedea exulans). In this species, the breeding cycle lasts almost a year and birds that succeed a given year tend to skip the next breeding occasion while birds that fail tend to breed again the following year. Most non-breeders remain unobservable at sea, but still a substantial number of observable non-breeders (ONB) was identified on breeding sites. Using multi-state capture-mark-recapture analyses, we used several measures to compare the performance of demographic estimates between models incorporating or ignoring ONB: bias (difference in mean), precision (difference is standard deviation) and accuracy (both differences in mean and standard deviation). Our results highlight that ignoring ONB leads to bias and loss of accuracy on breeding probability and survival estimates. These effects are even stronger when studied in an age-dependent framework. Biases on breeding probabilities and survival increased with age leading to overestimation of survival at old age and thus actuarial senescence and underestimation of reproductive senescence. We believe our study sheds new light on the difficulties of estimating demographic parameters in species/taxa where a significant part of the population does not breed every year. Taking into account ONB appeared important to improve demographic parameter estimates, models of population dynamics and evolutionary conclusions regarding senescence within and across taxa. |
---|