Cargando…

An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data

This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data em...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Kai-Tai, Li, Gang, Lu, Xuyang, Qin, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612471/
https://www.ncbi.nlm.nih.gov/pubmed/23573169
http://dx.doi.org/10.1155/2013/469373
_version_ 1782264663471292416
author Fang, Kai-Tai
Li, Gang
Lu, Xuyang
Qin, Hong
author_facet Fang, Kai-Tai
Li, Gang
Lu, Xuyang
Qin, Hong
author_sort Fang, Kai-Tai
collection PubMed
description This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data empirical likelihood method. For example, it does not require variance estimation which is problematic for the Buckley-James estimator. We also extend our method to incorporate auxiliary information. We compare our method with the synthetic data empirical likelihood of Li and Wang (2003) using simulations. We also illustrate our method using Stanford heart transplantation data.
format Online
Article
Text
id pubmed-3612471
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-36124712013-04-09 An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data Fang, Kai-Tai Li, Gang Lu, Xuyang Qin, Hong Comput Math Methods Med Research Article This paper develops a new empirical likelihood method for semiparametric linear regression with a completely unknown error distribution and right censored survival data. The method is based on the Buckley-James (1979) estimating equation. It inherits some appealing properties of the complete data empirical likelihood method. For example, it does not require variance estimation which is problematic for the Buckley-James estimator. We also extend our method to incorporate auxiliary information. We compare our method with the synthetic data empirical likelihood of Li and Wang (2003) using simulations. We also illustrate our method using Stanford heart transplantation data. Hindawi Publishing Corporation 2013 2013-03-14 /pmc/articles/PMC3612471/ /pubmed/23573169 http://dx.doi.org/10.1155/2013/469373 Text en Copyright © 2013 Kai-Tai Fang et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Fang, Kai-Tai
Li, Gang
Lu, Xuyang
Qin, Hong
An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title_full An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title_fullStr An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title_full_unstemmed An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title_short An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
title_sort empirical likelihood method for semiparametric linear regression with right censored data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612471/
https://www.ncbi.nlm.nih.gov/pubmed/23573169
http://dx.doi.org/10.1155/2013/469373
work_keys_str_mv AT fangkaitai anempiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT ligang anempiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT luxuyang anempiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT qinhong anempiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT fangkaitai empiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT ligang empiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT luxuyang empiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata
AT qinhong empiricallikelihoodmethodforsemiparametriclinearregressionwithrightcensoreddata