Cargando…
Cratylia mollis 1, 4 Lectin: A New Biotechnological Tool in IL-6, IL-17A, IL-22, and IL-23 Induction and Generation of Immunological Memory
Cratylia mollis lectin has already established cytokine induction in Th1 and Th2 pathways. Thereby, this study aimed to evaluate Cramoll 1, 4 in IL-6, IL-17A, IL-22, and IL-23 induction as well as analyze immunologic memory mechanism by reinducing lymphocyte stimulation. Initially we performed a scr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613062/ https://www.ncbi.nlm.nih.gov/pubmed/23586026 http://dx.doi.org/10.1155/2013/263968 |
Sumario: | Cratylia mollis lectin has already established cytokine induction in Th1 and Th2 pathways. Thereby, this study aimed to evaluate Cramoll 1, 4 in IL-6, IL-17A, IL-22, and IL-23 induction as well as analyze immunologic memory mechanism by reinducing lymphocyte stimulation. Initially we performed a screening in cultured splenocytes where Cramoll 1, 4 stimulated IL-6 production 5x more than ConA (P < 0.05). The same behavior was observed with IL-22 where the increase was greater than 4x. Nevertheless, IL-17A induction was similar for both lectins. In PBMCs, the same splenocytes course was observed for IL-6 and IL-17A. Concerning the stimulation of IL-22 and IL-23 Cramoll 1, 4 was more efficient than ConA in cytokines stimulation mainly in IL-23 (P < 0.01). Analyzing reinduced lymphocyte stimulation, IL-17A production was higher (P < 0.001) when the first stimulus was realized with Cramoll 1, 4 at 1 μg/mL and the second at 5 μg/mL. IL-22 shows significant differences (P < 0.01) at the same condition. Nevertheless, IL-23 revels the best response when the first stimuli was realized with Cramoll1, 4 at 100 ng/mL and the second with 5 μg/mL. We conclude that the Cramoll 1, 4 is able to induce IL-6, IL-17A, IL-22, and IL-23 cytokines in vitro better than Concavalin A, besides immunologic memory generation, being a potential biotechnological tool in Th17 pathway studies. |
---|