Cargando…
Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics
The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realiza...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613803/ https://www.ncbi.nlm.nih.gov/pubmed/23545570 http://dx.doi.org/10.1038/srep01581 |
_version_ | 1782264782643003392 |
---|---|
author | Park, Hyesung Chang, Sehoon Smith, Matthew Gradečak, Silvija Kong, Jing |
author_facet | Park, Hyesung Chang, Sehoon Smith, Matthew Gradečak, Silvija Kong, Jing |
author_sort | Park, Hyesung |
collection | PubMed |
description | The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode. |
format | Online Article Text |
id | pubmed-3613803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36138032013-04-04 Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics Park, Hyesung Chang, Sehoon Smith, Matthew Gradečak, Silvija Kong, Jing Sci Rep Article The high transparency of graphene, together with its good electrical conductivity and mechanical robustness, enable its use as transparent electrodes in optoelectronic devices such as solar cells. While initial demonstrations of graphene-based organic photovoltaics (OPV) have been promising, realization of scalable technologies remains challenging due to their performance and, critically, poor device reproducibility and yield. In this work, we demonstrate by engineering the interface between graphene and organic layers, device performance and yield become close to devices using indium tin oxide. Our study confirms that the key issue leading to the poor performance or irreproducibility in graphene-based OPV originates from the graphene interface, and can be addressed by a simple interface modification method introduced in this work. We also show similar approach allows graphene to be used as cathode in inverted OPV geometry, thereby demonstrating the universal application of graphene as transparent conductors for both the anode and cathode. Nature Publishing Group 2013-04-02 /pmc/articles/PMC3613803/ /pubmed/23545570 http://dx.doi.org/10.1038/srep01581 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Park, Hyesung Chang, Sehoon Smith, Matthew Gradečak, Silvija Kong, Jing Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title | Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title_full | Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title_fullStr | Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title_full_unstemmed | Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title_short | Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
title_sort | interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613803/ https://www.ncbi.nlm.nih.gov/pubmed/23545570 http://dx.doi.org/10.1038/srep01581 |
work_keys_str_mv | AT parkhyesung interfaceengineeringofgrapheneforuniversalapplicationsasbothanodeandcathodeinorganicphotovoltaics AT changsehoon interfaceengineeringofgrapheneforuniversalapplicationsasbothanodeandcathodeinorganicphotovoltaics AT smithmatthew interfaceengineeringofgrapheneforuniversalapplicationsasbothanodeandcathodeinorganicphotovoltaics AT gradecaksilvija interfaceengineeringofgrapheneforuniversalapplicationsasbothanodeandcathodeinorganicphotovoltaics AT kongjing interfaceengineeringofgrapheneforuniversalapplicationsasbothanodeandcathodeinorganicphotovoltaics |