Cargando…
NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model
Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works. Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datas...
Autores principales: | Quan, Tingwei, Zheng, Ting, Yang, Zhongqing, Ding, Wenxiang, Li, Shiwei, Li, Jing, Zhou, Hang, Luo, Qingming, Gong, Hui, Zeng, Shaoqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613804/ https://www.ncbi.nlm.nih.gov/pubmed/23546385 http://dx.doi.org/10.1038/srep01414 |
Ejemplares similares
-
Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model
por: Quan, Tingwei, et al.
Publicado: (2014) -
Identifying Weak Signals in Inhomogeneous Neuronal Images for Large-Scale Tracing of Sparsely Distributed Neurites
por: Li, Shiwei, et al.
Publicado: (2019) -
Reconstruction of micron resolution mouse brain surface from large-scale imaging dataset using resampling-based variational model
por: Li, Jing, et al.
Publicado: (2015) -
DeepBouton: Automated Identification of Single-Neuron Axonal Boutons at the Brain-Wide Scale
por: Cheng, Shenghua, et al.
Publicado: (2019) -
Optimization of Traced Neuron Skeleton Using Lasso-Based Model
por: Li, Shiwei, et al.
Publicado: (2019)