Cargando…

Effects of Hypoxia on Nitric Oxide (NO) in Skin Gas and Exhaled Air

This study confirmed the effects of hypoxia on nitric oxide (NO) concentrations in skin gas and exhaled air. NO concentrations in skin gas and exhaled air were measured by a chemiluminescence analyzer. Arterial oxygen saturation (SpO(2)) of the right forefinger was determined using an oxygen saturat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohkuwa, Tetsuo, Mizuno, Tatsuo, Kato, Yuji, Nose, Kazutoshi, Itoh, Hiroshi, Tsuda, Takao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Master Publishing Group 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614601/
https://www.ncbi.nlm.nih.gov/pubmed/23674991
Descripción
Sumario:This study confirmed the effects of hypoxia on nitric oxide (NO) concentrations in skin gas and exhaled air. NO concentrations in skin gas and exhaled air were measured by a chemiluminescence analyzer. Arterial oxygen saturation (SpO(2)) of the right forefinger was determined using an oxygen saturation monitor. The M ± SEM of NO concentrations in skin gas at 20.93% (control), 15.1% and 14.8% oxygen concentrations were 23.7 ± 3.6, 32.3 ± 4.7 and 36.2 ± 5.2 ppb, respectively. M ± SEM of NO concentrations in exhaled air at 20.93% (control), 15.1%, and 14.8% were 25.0 ± 5.1, 35.01 ± 5.6 and 44.9 ± 7.2 ppb, respectively. There was no significant difference in NO concentration at the absolute value of skin gas and exhaled air between normoxia and hypoxia. But significant increase was found at relative changes in skin gas at 15.1% (p<0.01) and 14.8% (p<0.01) oxygen content compared with control. Significant increase was also found at relative changes in exhaled air at 15.1% (p<0.01) and 14.8% (p<0.01) oxygen content compared with control. In conclusion, we confirmed that exposure to hypoxia elicits an increase in NO concentrations at relative changes of skin gas and exhaled air compared to normoxia.