Cargando…
Sildenafil Inhibits the Proliferation of Cultured Human Endothelial Cells
The proliferation of endothelial cells plays a crucial role in the development of intraplaque angiogenesis (IPA). IPA is a major source of intraplaque hemorrhage and therefore contributes to the destabilization of atherosclerotic plaques. Therefore, the aim of the present study was to examine, wheth...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Master Publishing Group
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614625/ https://www.ncbi.nlm.nih.gov/pubmed/23675029 |
Sumario: | The proliferation of endothelial cells plays a crucial role in the development of intraplaque angiogenesis (IPA). IPA is a major source of intraplaque hemorrhage and therefore contributes to the destabilization of atherosclerotic plaques. Therefore, the aim of the present study was to examine, whether sildenafil inhibits endothelial cell growth. The proliferation of human endothelial cells derived from umbilical cord veins (HUVEC) was examined on DNA level by measurements of ((3)H)-thymidine incorporation. Cell viability was analyzed using trypan blue staining. The proliferation of cultured human endothelial cells was significantly decreased by 1 μmol/l (-48.4%) and 10 μmol/l (-89.6%) sildenafil (n=10, p<0.05). This was not a cytotoxic effect, because cell viability was only reduced at sildenafil concentrations of 50 μmol/l or greater. In addition sildenafil significantly reduced endothelial proliferation induced by bFGF (n=10, p<0.05). The presented results demonstrate an antiangiogenic effect of sildenafil that might be useful in the prevention of atherosclerotic plaque vascularization. |
---|