Cargando…

Specificity of archaeal caspase activity in the extreme halophile Haloferax volcanii

Caspase-like proteases are key initiators and executioners of programmed cell death (PCD), which is initiated by environmental stimuli and manifests in organisms ranging from unicellular microbes to higher eukaryotes. Archaea had been absent from the caspase inheritance discussion due to a lack of g...

Descripción completa

Detalles Bibliográficos
Autores principales: Seth-Pasricha, Mansha, Bidle, Kelly A, Bidle, Kay D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615174/
https://www.ncbi.nlm.nih.gov/pubmed/23565123
http://dx.doi.org/10.1111/1758-2229.12010
Descripción
Sumario:Caspase-like proteases are key initiators and executioners of programmed cell death (PCD), which is initiated by environmental stimuli and manifests in organisms ranging from unicellular microbes to higher eukaryotes. Archaea had been absent from the caspase inheritance discussion due to a lack of gene homologues. We recently demonstrated extremely high, basal caspase-like catalytic activity in the model haloarcheon, Haloferax volcanii, which was linked to the cellular stress response and was widespread among diverse Archaea. Here, we rigorously tested the catalytic specificity of the observed archaeal caspase-like activities using hydrolytic assays with a diverse suite of protease substrates and inhibitors compared with known model serine and cysteine proteases (trypsin, cathepsin, papain, and human caspase-8). Our experiments demonstrate that exponentially growing H. volcanii possesses a highly specific caspase-like activity that most closely resembles caspase-4, is preferentially inhibited by the pan-caspase inhibitor, zVAD-FMK, and has no cross-reactivity with other known protease families. Our findings firmly root the extremely high levels of caspase-like activity as the dominant proteolytic activity in this extreme haloarcheaon, thereby providing further support for housekeeping functions in Haloarchaea. Given the deep archaeal roots of eukaryotes, we suggest that this activity served as a foundation for stress pathways in higher organisms.