Cargando…

Inhibition of BRCA2 and Thymidylate Synthase Creates Multidrug Sensitive Tumor Cells via the Induction of Combined “Complementary Lethality”

A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 med...

Descripción completa

Detalles Bibliográficos
Autores principales: Rytelewski, Mateusz, Ferguson, Peter J, Vareki, Saman Maleki, Figueredo, Rene, Vincent, Mark, Koropatnick, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615817/
https://www.ncbi.nlm.nih.gov/pubmed/23481354
http://dx.doi.org/10.1038/mtna.2013.7
Descripción
Sumario:A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient prognosis. Thymidylate synthase (TS) is also involved in DNA maintenance and generates cellular thymidylate. We determined that antisense downregulation of BRCA2 synergistically potentiated drugs with mechanisms of action related to BRCA2 function (cisplatin, melphalan), a phenomenon we named “complementary lethality.” TS knockdown induced complementary lethality to TS-targeting drugs (5-FUdR and pemetrexed) but not DNA cross-linking agents. Combined targeting of BRCA2 and TS induced complementary lethality to both DNA-damaging and TS-targeting agents, thus creating multidrug sensitive tumors. In addition, we demonstrated for the first time that simultaneous downregulation of both targets induced combined complementary lethality to multiple mechanistically different drugs in the same cell population. In this study, we propose and define the concept of “complementary lethality” and show that actively targeting BRCA2 and TS is of potential therapeutic benefit in multidrug treatment of human tumors. This work has contributed to the development of a BRCA2-targeting antisense oligdeoxynucleotide (ASO) “BR-1” which we will test in vivo in combination with our TS-targeting ASO “SARI 83” and attempt early clinical trials in the future.