Cargando…
Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues
There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616230/ https://www.ncbi.nlm.nih.gov/pubmed/23449538 |
_version_ | 1782265126340001792 |
---|---|
author | Georgakopoulou, EA Tsimaratou, K Evangelou, K Fernandez, Marcos-PJ Zoumpourlis, V Trougakos, IP Kletsas, D Bartek, J Serrano, M Gorgoulis, VG |
author_facet | Georgakopoulou, EA Tsimaratou, K Evangelou, K Fernandez, Marcos-PJ Zoumpourlis, V Trougakos, IP Kletsas, D Bartek, J Serrano, M Gorgoulis, VG |
author_sort | Georgakopoulou, EA |
collection | PubMed |
description | There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histochemical Sudan-Black-B (SBB) specific stain of lipofuscin, an aggregate of oxidized proteins, lipids and metals, known to accumulate in aged tissues, as an additional reliable approach to detect senescent cells independently of sample preparation. We analyzed cellular systems in which senescence was triggered by replicative exhaustion or stressful stimuli, conditional knock-in mice producing precancerous lesions exhibiting senescence, and human preneoplastic lesions known to contain senescent cells. In the above settings we demonstrated co-localization of lipofuscin and SA-β-gal in senescent cells in vitro and in vivo (cryo-preserved tissue), strongly supporting the candidacy of lipofuscin for a biomarker of cellular senescence. Furthermore, cryo-preserved tissues positive for SA-β-gal were formalin-fixed, paraffin-embedded, and stained with SBB. The corresponding SA-β-gal positive tissue areas stained specifically for lipofuscin by SBB, whereas tissues negative for SA-β-gal were lipofuscin negative, validating the sensitivity and specificity of the SBB staining to visualize senescent cells in archival material. The latter unique property of SBB could be exploited in research on widely available retrospective tissue material. |
format | Online Article Text |
id | pubmed-3616230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-36162302013-04-08 Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues Georgakopoulou, EA Tsimaratou, K Evangelou, K Fernandez, Marcos-PJ Zoumpourlis, V Trougakos, IP Kletsas, D Bartek, J Serrano, M Gorgoulis, VG Aging (Albany NY) Research Paper There is shortage of extensive clinicopathologic studies of cellular senescence because the most reliable senescence biomarker, the detection of Senescence-Associated-beta-galactosidase activity (SA-β-gal), is inapplicable in archival material and requires snap-frozen tissues. We validated the histochemical Sudan-Black-B (SBB) specific stain of lipofuscin, an aggregate of oxidized proteins, lipids and metals, known to accumulate in aged tissues, as an additional reliable approach to detect senescent cells independently of sample preparation. We analyzed cellular systems in which senescence was triggered by replicative exhaustion or stressful stimuli, conditional knock-in mice producing precancerous lesions exhibiting senescence, and human preneoplastic lesions known to contain senescent cells. In the above settings we demonstrated co-localization of lipofuscin and SA-β-gal in senescent cells in vitro and in vivo (cryo-preserved tissue), strongly supporting the candidacy of lipofuscin for a biomarker of cellular senescence. Furthermore, cryo-preserved tissues positive for SA-β-gal were formalin-fixed, paraffin-embedded, and stained with SBB. The corresponding SA-β-gal positive tissue areas stained specifically for lipofuscin by SBB, whereas tissues negative for SA-β-gal were lipofuscin negative, validating the sensitivity and specificity of the SBB staining to visualize senescent cells in archival material. The latter unique property of SBB could be exploited in research on widely available retrospective tissue material. Impact Journals LLC 2012-12-29 /pmc/articles/PMC3616230/ /pubmed/23449538 Text en Copyright: © 2013 Georgakopoulou et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited |
spellingShingle | Research Paper Georgakopoulou, EA Tsimaratou, K Evangelou, K Fernandez, Marcos-PJ Zoumpourlis, V Trougakos, IP Kletsas, D Bartek, J Serrano, M Gorgoulis, VG Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title | Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title_full | Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title_fullStr | Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title_full_unstemmed | Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title_short | Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues |
title_sort | specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. a method applicable in cryo-preserved and archival tissues |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616230/ https://www.ncbi.nlm.nih.gov/pubmed/23449538 |
work_keys_str_mv | AT georgakopoulouea specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT tsimaratouk specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT evangelouk specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT fernandezmarcospj specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT zoumpourlisv specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT trougakosip specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT kletsasd specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT bartekj specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT serranom specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues AT gorgoulisvg specificlipofuscinstainingasanovelbiomarkertodetectreplicativeandstressinducedsenescenceamethodapplicableincryopreservedandarchivaltissues |