Cargando…
Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions
Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5′-(TTAGGG)(4)TTA, along t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616730/ https://www.ncbi.nlm.nih.gov/pubmed/23396442 http://dx.doi.org/10.1093/nar/gkt038 |
Sumario: | Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5′-(TTAGGG)(4)TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured, it was compared with PDB structures to identify the best-matching G-quadruplex conformation. This method is well-suited to identify biomolecular structures in complex settings not amenable to conventional approaches, such as in a solution with mixed species or at physiologically significant concentrations. With this approach, we found that parallel G-quadruplex coexists with non-parallel species (1:1 ratio) in crowded buffers with dehydrating cosolutes [40% w/v dimethyl sulfoxide (DMSO) or acetonitrile (ACN)]. In crowded solutions with steric cosolutes [40% w/v bovine serum albumin (BSA)], the parallel G-quadruplex constitutes only 10% of the population. This difference unequivocally supports the notion that dehydration promotes the formation of parallel G-quadruplexes. Compared with DNA hairpins that have decreased unfolding forces in crowded (9 pN) versus diluted (15 pN) buffers, those of G-quadruplexes remain the same (20 pN). Such a result implies that in a cellular environment, DNA G-quadruplexes, instead of hairpins, can stop DNA/RNA polymerases with stall forces often <20 pN. |
---|