Cargando…
Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai
BACKGROUND: Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism unde...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616903/ https://www.ncbi.nlm.nih.gov/pubmed/23514540 http://dx.doi.org/10.1186/1471-2164-14-197 |
_version_ | 1782265183655165952 |
---|---|
author | Xiao, Jin Jin, Xiahong Jia, Xinping Wang, Haiyan Cao, Aizhong Zhao, Weiping Pei, Haiyan Xue, Zhaokun He, Liqiang Chen, Qiguang Wang, Xiue |
author_facet | Xiao, Jin Jin, Xiahong Jia, Xinping Wang, Haiyan Cao, Aizhong Zhao, Weiping Pei, Haiyan Xue, Zhaokun He, Liqiang Chen, Qiguang Wang, Xiue |
author_sort | Xiao, Jin |
collection | PubMed |
description | BACKGROUND: Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism underlying its resistance to FHB is still limited. RESULTS: To get an overview of transcriptome characteristics of Wangshuibai during infection by Fg, a high-throughput RNA sequencing based on next generation sequencing (NGS) technology (Illumina) were performed. Totally, 165,499 unigenes were generated and assigned to known protein databases including NCBI non-redundant protein database (nr) (82,721, 50.0%), Gene Ontology (GO) (38,184, 23.1%), Swiss-Prot (50,702, 30.6%), Clusters of orthologous groups (COG) (51,566, 31.2%) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (30,657, 18.5%), as determined by Blastx search. With another NGS based platform, a digital gene expression (DGE) system, gene expression in Wangshuibai and its FHB susceptible mutant NAUH117 was profiled and compared at two infection stages by inoculation of Fg at 24 and 48 hour, with the aim of identifying genes involved in FHB resistance. CONCLUSION: Pathogen-related proteins such as PR5, PR14 and ABC transporter and JA signaling pathway were crucial for FHB resistance, especially that mediated by Fhb1. ET pathway and ROS/NO pathway were not activated in Wangshuibai and may be not pivotal in defense to FHB. Consistent with the fact that in NAUH117 there presented a chromosome fragment deletion, which led to its increased FHB susceptibility, in Wangshuibai, twenty out of eighty-nine genes showed changed expression patterns upon the infection of Fg. The up-regulation of eight of them was confirmed by qRT-PCR, revealing they may be candidate genes for Fhb1 and need further functional analysis to confirm their roles in FHB resistance. |
format | Online Article Text |
id | pubmed-3616903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36169032013-04-05 Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai Xiao, Jin Jin, Xiahong Jia, Xinping Wang, Haiyan Cao, Aizhong Zhao, Weiping Pei, Haiyan Xue, Zhaokun He, Liqiang Chen, Qiguang Wang, Xiue BMC Genomics Research Article BACKGROUND: Fusarium head blight (FHB), caused mainly by Fusarium graminearum (Fg) Schwabe (teleomorph: Gibberellazeae Schwble), brings serious damage to wheat production. Chinese wheat landrace Wangshuibai is one of the most important resistance sources in the world. The knowledge of mechanism underlying its resistance to FHB is still limited. RESULTS: To get an overview of transcriptome characteristics of Wangshuibai during infection by Fg, a high-throughput RNA sequencing based on next generation sequencing (NGS) technology (Illumina) were performed. Totally, 165,499 unigenes were generated and assigned to known protein databases including NCBI non-redundant protein database (nr) (82,721, 50.0%), Gene Ontology (GO) (38,184, 23.1%), Swiss-Prot (50,702, 30.6%), Clusters of orthologous groups (COG) (51,566, 31.2%) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (30,657, 18.5%), as determined by Blastx search. With another NGS based platform, a digital gene expression (DGE) system, gene expression in Wangshuibai and its FHB susceptible mutant NAUH117 was profiled and compared at two infection stages by inoculation of Fg at 24 and 48 hour, with the aim of identifying genes involved in FHB resistance. CONCLUSION: Pathogen-related proteins such as PR5, PR14 and ABC transporter and JA signaling pathway were crucial for FHB resistance, especially that mediated by Fhb1. ET pathway and ROS/NO pathway were not activated in Wangshuibai and may be not pivotal in defense to FHB. Consistent with the fact that in NAUH117 there presented a chromosome fragment deletion, which led to its increased FHB susceptibility, in Wangshuibai, twenty out of eighty-nine genes showed changed expression patterns upon the infection of Fg. The up-regulation of eight of them was confirmed by qRT-PCR, revealing they may be candidate genes for Fhb1 and need further functional analysis to confirm their roles in FHB resistance. BioMed Central 2013-03-21 /pmc/articles/PMC3616903/ /pubmed/23514540 http://dx.doi.org/10.1186/1471-2164-14-197 Text en Copyright © 2013 Xiao et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xiao, Jin Jin, Xiahong Jia, Xinping Wang, Haiyan Cao, Aizhong Zhao, Weiping Pei, Haiyan Xue, Zhaokun He, Liqiang Chen, Qiguang Wang, Xiue Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title | Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title_full | Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title_fullStr | Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title_full_unstemmed | Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title_short | Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai |
title_sort | transcriptome-based discovery of pathways and genes related to resistance against fusarium head blight in wheat landrace wangshuibai |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616903/ https://www.ncbi.nlm.nih.gov/pubmed/23514540 http://dx.doi.org/10.1186/1471-2164-14-197 |
work_keys_str_mv | AT xiaojin transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT jinxiahong transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT jiaxinping transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT wanghaiyan transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT caoaizhong transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT zhaoweiping transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT peihaiyan transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT xuezhaokun transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT heliqiang transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT chenqiguang transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai AT wangxiue transcriptomebaseddiscoveryofpathwaysandgenesrelatedtoresistanceagainstfusariumheadblightinwheatlandracewangshuibai |