Cargando…
Cell stress molecules in the skeletal muscle of GNE myopathy
BACKGROUND: Mutations of the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE)-gene are causally related to GNE myopathy. Yet, underlying pathomechanisms of muscle fibre damage have remained elusive. In sporadic inclusion body myositis (sIBM), the pro-inflammatory cell-stress medi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616993/ https://www.ncbi.nlm.nih.gov/pubmed/23496965 http://dx.doi.org/10.1186/1471-2377-13-24 |
Sumario: | BACKGROUND: Mutations of the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE)-gene are causally related to GNE myopathy. Yet, underlying pathomechanisms of muscle fibre damage have remained elusive. In sporadic inclusion body myositis (sIBM), the pro-inflammatory cell-stress mediators αB-crystallin and inducible nitric oxide synthase (iNOS) are crucial markers of the disease pathology. METHODS: 10 muscle biopsies from GNE myopathy patients were analyzed for mRNA-expression of markers of cell-stress, inflammation and β-amyloid and compared to non-myopathic controls. Using double-labeling immunohistochemistry, serial sections of skeletal muscle biopsies were stained for amyloid precursor protein (APP), major histocompatibility complex (MHC)-I, αB-crystallin, neural cell adhesion molecule (NCAM), interleukin (IL)-1β, β-amyloid, iNOS, and phosphorylated neurofilament (P-neurofilament) as well as hematoxylin/eosin histochemistry. Corresponding areas of all biopsies with a total of 2,817 muscle fibres were quantitatively assessed for all markers. RESULTS: mRNA-expression of APP, NCAM, iNOS, TNF-α and TGF-β was higher in GNE myopathy compared to controls, yet this was not statistically significant. The mRNA-expression of APP and αB-crystallin significantly correlated with the expression of several pro-inflammatory and cell-stress-associated markers as NCAM, IL-1β, TGF-β, CCL-3, and CCL4. By immunohistochemistry, αB-crystallin and iNOS were co-upregulated and the number of fibres positive for αB-crystallin, NCAM, MHC-I and iNOS significantly correlated with each other. A large fraction of fibres positive for αB-crystallin were double positive for iNOS and vice-versa. Moreover, several fibres with structural abnormalities were positive for αB-crystallin and iNOS. Notably, particularly normal appearing fibres displayed an overexpression of these molecules. CONCLUSIONS: The cell-stress molecules αB-crystallin and iNOS are overexpressed in GNE myopathy muscle and may identify early disease mechanisms. The data help to better understand the pathology of GNE myopathy. |
---|