Cargando…
More powerful significant testing for time course gene expression data using functional principal component analysis approaches
BACKGROUND: One of the fundamental problems in time course gene expression data analysis is to identify genes associated with a biological process or a particular stimulus of interest, like a treatment or virus infection. Most of the existing methods for this problem are designed for data with longi...
Autores principales: | Wu, Shuang, Wu, Hulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617096/ https://www.ncbi.nlm.nih.gov/pubmed/23323795 http://dx.doi.org/10.1186/1471-2105-14-6 |
Ejemplares similares
-
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017) -
Probabilistic principal component analysis for metabolomic data
por: Nyamundanda, Gift, et al.
Publicado: (2010) -
Principal component gene set enrichment (PCGSE)
por: Frost, H. Robert, et al.
Publicado: (2015) -
Incorporating biological information in sparse principal component analysis with application to genomic data
por: Li, Ziyi, et al.
Publicado: (2017) -
Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices
por: Meyer, Karin, et al.
Publicado: (2005)