Cargando…

Polypyrimidine Tract Binding Protein-1 (PTB1) Is a Determinant of the Tissue and Host Tropism of a Human Rhinovirus/Poliovirus Chimera PV1(RIPO)

The internal ribosomal entry site (IRES) of picornavirus genomes serves as the nucleation site of a highly structured ribonucleoprotein complex essential to the binding of the 40S ribosomal subunit and initiation of viral protein translation. The transition from naked RNA to a functional "IRESo...

Descripción completa

Detalles Bibliográficos
Autores principales: Jahan, Nusrat, Wimmer, Eckard, Mueller, Steffen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617181/
https://www.ncbi.nlm.nih.gov/pubmed/23593313
http://dx.doi.org/10.1371/journal.pone.0060791
Descripción
Sumario:The internal ribosomal entry site (IRES) of picornavirus genomes serves as the nucleation site of a highly structured ribonucleoprotein complex essential to the binding of the 40S ribosomal subunit and initiation of viral protein translation. The transition from naked RNA to a functional "IRESome" complex are poorly understood, involving the folding of secondary and tertiary RNA structure, facilitated by a tightly concerted binding of various host cell proteins that are commonly referred to as IRES trans-acting factors (ITAFs). Here we have investigated the influence of one ITAF, the polypyrimidine tract-binding protein 1 (PTB1), on the tropism of PV1(RIPO), a chimeric poliovirus in which translation of the poliovirus polyprotein is under the control of a human rhinovirus type 2 (HRV2) IRES element. We show that PV1(RIPO)'s growth defect in restrictive mouse cells is partly due to the inability of its IRES to interact with endogenous murine PTB. Over-expression of human PTB1 stimulated the HRV2 IRES-mediated translation, resulting in increased growth of PV1(RIPO) in murine cells and human neuronal SK-N-MC cells. Mutations within the PV1(RIPO) IRES, selected to grow in restrictive mouse cells, eliminated the human PTB1 supplementation requirement, by restoring the ability of the IRES to interact with endogenous murine PTB. In combination with our previous findings these results give a compelling insight into the thermodynamic behavior of IRES structures. We have uncovered three distinct thermodynamic aspects of IRES formation which may independently contribute to overcome the observed PV1(RIPO) IRES block by lowering the free energy δG of the IRESome formation, and stabilizing the correct and functional structure: 1) lowering the growth temperature, 2) modifying the complement of ITAFs in restricted cells, or 3) selection of adaptive mutations. All three mechanisms can conceivably modulate the thermodynamics of RNA folding, and thus facilitate and stabilize the functional IRES structure.