Cargando…

Proliferation Rate of Somatic Cells Affects Reprogramming Efficiency

The discovery of induced pluripotent stem (iPS) cells provides not only new approaches for cell replacement therapy, but also new ways for drug screening. However, the undefined mechanism and relatively low efficiency of reprogramming have limited the application of iPS cells. In an attempt to furth...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yongyu, Wei, Xiaoyuan, Wang, Min, Zhang, Ru, Fu, Yanbin, Xing, Mingzhe, Hua, Qiuhong, Xie, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617278/
https://www.ncbi.nlm.nih.gov/pubmed/23439651
http://dx.doi.org/10.1074/jbc.M112.403881
Descripción
Sumario:The discovery of induced pluripotent stem (iPS) cells provides not only new approaches for cell replacement therapy, but also new ways for drug screening. However, the undefined mechanism and relatively low efficiency of reprogramming have limited the application of iPS cells. In an attempt to further optimize the reprogramming condition, we unexpectedly observed that removing c-Myc from the Oct-4, Sox-2, Klf-4, and c-Myc (OSKM) combination greatly enhanced the generation of iPS cells. The iPS cells generated without c-Myc attained salient pluripotent characteristics and were capable of producing full-term mice through tetraploid complementation. We observed that forced expression of c-Myc induced the expression of many genes involved in cell cycle control and a hyperproliferation state of the mouse embryonic fibroblasts during the early stage of reprogramming. This enhanced proliferation of mouse embryonic fibroblasts correlated negatively to the overall reprogramming efficiency. By applying small molecule inhibitors of cell proliferation at the early stage of reprogramming, we were able to improve the efficiency of iPS cell generation mediated by OSKM. Our data demonstrated that the proliferation rate of the somatic cell plays critical roles in reprogramming. Slowing down the proliferation of the original cells might be beneficial to the induction of iPS cells.