Cargando…
Glycoproteomic Analysis of the Secretome of Human Endothelial Cells
Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free med...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617342/ https://www.ncbi.nlm.nih.gov/pubmed/23345538 http://dx.doi.org/10.1074/mcp.M112.024018 |
_version_ | 1782265252438605824 |
---|---|
author | Yin, Xiaoke Bern, Marshall Xing, Qiuru Ho, Jenny Viner, Rosa Mayr, Manuel |
author_facet | Yin, Xiaoke Bern, Marshall Xing, Qiuru Ho, Jenny Viner, Rosa Mayr, Manuel |
author_sort | Yin, Xiaoke |
collection | PubMed |
description | Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H(2)(18)O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap–orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H(2)(18)O, 123 unique peptides displayed (18)O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples. |
format | Online Article Text |
id | pubmed-3617342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36173422013-05-29 Glycoproteomic Analysis of the Secretome of Human Endothelial Cells Yin, Xiaoke Bern, Marshall Xing, Qiuru Ho, Jenny Viner, Rosa Mayr, Manuel Mol Cell Proteomics Research Previous proteomics studies have partially unraveled the complexity of endothelial protein secretion but have not investigated glycosylation, a key modification of secreted and membrane proteins for cell communication. In this study, human umbilical vein endothelial cells were kept in serum-free medium before activation by phorbol-12-myristate-13 acetate, a commonly used secretagogue that induces exocytosis of endothelial vesicles. In addition to 123 secreted proteins, the secretome was particularly rich in membrane proteins. Glycopeptides were enriched by zwitterionic hydrophilic interaction liquid chromatography resins and were either treated with PNGase F and H(2)(18)O or directly analyzed using a recently developed workflow combining higher-energy C-trap dissociation (HCD) with electron-transfer dissociation (ETD) for a hybrid linear ion trap–orbitrap mass spectrometer. After deglycosylation with PNGase F in the presence of H(2)(18)O, 123 unique peptides displayed (18)O-deamidation of asparagine, corresponding to 86 proteins with a total of 121 glycosylation sites. Direct glycopeptide analysis via HCD-ETD identified 131 glycopeptides from 59 proteins and 118 glycosylation sites, of which 41 were known, 51 were predicted, and 26 were novel. Two methods were compared: alternating HCD-ETD and HCD-product-dependent ETD. The former detected predominantly high-intensity, multiply charged glycopeptides, whereas the latter preferentially selected precursors with complex/hybrid glycans for fragmentation. Validation was performed by means of glycoprotein enrichment and analysis of the input, the flow-through, and the bound fraction. This study represents the most comprehensive characterization of endothelial protein secretion to date and demonstrates the potential of new HCD-ETD workflows for determining the glycosylation status of complex biological samples. The American Society for Biochemistry and Molecular Biology 2013-04 2013-01-23 /pmc/articles/PMC3617342/ /pubmed/23345538 http://dx.doi.org/10.1074/mcp.M112.024018 Text en © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Research Yin, Xiaoke Bern, Marshall Xing, Qiuru Ho, Jenny Viner, Rosa Mayr, Manuel Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title | Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title_full | Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title_fullStr | Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title_full_unstemmed | Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title_short | Glycoproteomic Analysis of the Secretome of Human Endothelial Cells |
title_sort | glycoproteomic analysis of the secretome of human endothelial cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617342/ https://www.ncbi.nlm.nih.gov/pubmed/23345538 http://dx.doi.org/10.1074/mcp.M112.024018 |
work_keys_str_mv | AT yinxiaoke glycoproteomicanalysisofthesecretomeofhumanendothelialcells AT bernmarshall glycoproteomicanalysisofthesecretomeofhumanendothelialcells AT xingqiuru glycoproteomicanalysisofthesecretomeofhumanendothelialcells AT hojenny glycoproteomicanalysisofthesecretomeofhumanendothelialcells AT vinerrosa glycoproteomicanalysisofthesecretomeofhumanendothelialcells AT mayrmanuel glycoproteomicanalysisofthesecretomeofhumanendothelialcells |