Cargando…
Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task
Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the correspond...
Autores principales: | Kinjo, Ken, Uchibe, Eiji, Doya, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617398/ https://www.ncbi.nlm.nih.gov/pubmed/23576983 http://dx.doi.org/10.3389/fnbot.2013.00007 |
Ejemplares similares
-
Adaptive Baseline Enhances EM-Based Policy Search: Validation in a View-Based Positioning Task of a Smartphone Balancer
por: Wang, Jiexin, et al.
Publicado: (2017) -
Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces
por: Elfwing, Stefan, et al.
Publicado: (2013) -
Neurobiologically Inspired Mobile Robot Navigation and Planning
por: Cuperlier, Nicolas, et al.
Publicado: (2007) -
An immediate-return reinforcement learning for the atypical Markov decision processes
por: Pan, Zebang, et al.
Publicado: (2022) -
Solvable Model for the Linear Separability of Structured Data
por: Gherardi, Marco
Publicado: (2021)