Cargando…

Arterial Klotho Expression and FGF23 Effects on Vascular Calcification and Function

Recent studies support a role for FGF23 and its co-receptor Klotho in cardiovascular pathology, yet the underlying mechanisms remain largely elusive. Herein, we analyzed the expression of Klotho in mouse arteries and generated a novel mouse model harboring a vascular smooth muscle cell specific dele...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindberg, Karolina, Olauson, Hannes, Amin, Risul, Ponnusamy, Arvind, Goetz, Regina, Taylor, Rebecca F., Mohammadi, Moosa, Canfield, Ann, Kublickiene, Karolina, Larsson, Tobias E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618102/
https://www.ncbi.nlm.nih.gov/pubmed/23577141
http://dx.doi.org/10.1371/journal.pone.0060658
Descripción
Sumario:Recent studies support a role for FGF23 and its co-receptor Klotho in cardiovascular pathology, yet the underlying mechanisms remain largely elusive. Herein, we analyzed the expression of Klotho in mouse arteries and generated a novel mouse model harboring a vascular smooth muscle cell specific deletion of Klotho (Sm22-KL(−/−)). Arterial Klotho expression was detected at very low levels with quantitative real-time PCR; Klotho protein levels were undetectable by immunohistochemistry and Western blot. There was no difference in arterial Klotho between Sm22-KL(−/−) and wild-type mice, as well as no changes in serum markers of mineral metabolism. Intravenous delivery of FGF23 elicited a rise in renal (0.005; p<0.01) but not arterial Egr-1 expression, a marker of Klotho-dependent FGF23 signaling. Further, the impact of FGF23 on vascular calcification and endothelial response was evaluated in bovine vascular smooth muscle cells (bVSMC) and in a murine ex vivo model of endothelial function, respectively. FGF23 treatment (0.125–2 ng/mL) did not modify calcification in bVSMCs or dilatory, contractile and structural properties in mice arterial specimen ex vivo. Collectively, these results demonstrate that FGF23-Klotho signaling is absent in mouse arteries and that the vascular response was unaffected by FGF23 treatment. Thus, our data do not support Klotho-mediated FGF23 effects in the vasculature although confirmative studies in humans are warranted.