Cargando…
Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features
BACKGROUND: Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect...
Autores principales: | Tang, Buzhou, Cao, Hongxin, Wu, Yonghui, Jiang, Min, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618243/ https://www.ncbi.nlm.nih.gov/pubmed/23566040 http://dx.doi.org/10.1186/1472-6947-13-S1-S1 |
Ejemplares similares
-
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature
por: Tang, Buzhou, et al.
Publicado: (2015) -
Prediction of DNA-binding protein based on statistical and geometric features and support vector machines
por: Zhou, Weiqiang, et al.
Publicado: (2011) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
Analysis of alcoholism data using support vector machines
por: Yu, Robert, et al.
Publicado: (2005)