Cargando…
Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis
BACKGROUND: Identifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this probl...
Autores principales: | Collins, Ryan L, Hu, Ting, Wejse, Christian, Sirugo, Giorgio, Williams, Scott M, Moore, Jason H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618340/ https://www.ncbi.nlm.nih.gov/pubmed/23418869 http://dx.doi.org/10.1186/1756-0381-6-4 |
Ejemplares similares
-
An information-gain approach to detecting three-way epistatic interactions in genetic association studies
por: Hu, Ting, et al.
Publicado: (2013) -
The effect of alternative permutation testing strategies on the performance of multifactor dimensionality reduction
por: Motsinger-Reif, Alison A
Publicado: (2008) -
An R package implementation of multifactor dimensionality reduction
por: Winham, Stacey J, et al.
Publicado: (2011) -
A roadmap to multifactor dimensionality reduction methods
por: Gola, Damian, et al.
Publicado: (2016) -
Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms
por: Arehart, Eric, et al.
Publicado: (2009)