Cargando…
Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor
Si is a promising anode material for Li-ion batteries, since it absorbs large amounts of Li. However, insertion of Li leads to 334% of volumetric expansion, huge stresses, and fracture; it can be suppressed by utilizing nanoscale anode structures. Continuum approaches to stress relaxation in Li(x)Si...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619142/ https://www.ncbi.nlm.nih.gov/pubmed/23563528 http://dx.doi.org/10.1038/srep01615 |
_version_ | 1782265474896101376 |
---|---|
author | Levitas, Valery I. Attariani, Hamed |
author_facet | Levitas, Valery I. Attariani, Hamed |
author_sort | Levitas, Valery I. |
collection | PubMed |
description | Si is a promising anode material for Li-ion batteries, since it absorbs large amounts of Li. However, insertion of Li leads to 334% of volumetric expansion, huge stresses, and fracture; it can be suppressed by utilizing nanoscale anode structures. Continuum approaches to stress relaxation in Li(x)Si, based on plasticity theory, are unrealistic, because the yield strength of Li(x)Si is much higher than the generated stresses. Here, we suggest that stress relaxation is due to anisotropic (tensorial) compositional straining that occurs during insertion-extraction at any deviatoric stresses. Developed theory describes known experimental and atomistic simulation data. A method to reduce stresses is predicted and confirmed by known experiments. Chemical potential has an additional contribution due to deviatoric stresses, which leads to increases in the driving force both for insertion and extraction. The results have conceptual and general character and are applicable to any material systems. |
format | Online Article Text |
id | pubmed-3619142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36191422013-04-09 Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor Levitas, Valery I. Attariani, Hamed Sci Rep Article Si is a promising anode material for Li-ion batteries, since it absorbs large amounts of Li. However, insertion of Li leads to 334% of volumetric expansion, huge stresses, and fracture; it can be suppressed by utilizing nanoscale anode structures. Continuum approaches to stress relaxation in Li(x)Si, based on plasticity theory, are unrealistic, because the yield strength of Li(x)Si is much higher than the generated stresses. Here, we suggest that stress relaxation is due to anisotropic (tensorial) compositional straining that occurs during insertion-extraction at any deviatoric stresses. Developed theory describes known experimental and atomistic simulation data. A method to reduce stresses is predicted and confirmed by known experiments. Chemical potential has an additional contribution due to deviatoric stresses, which leads to increases in the driving force both for insertion and extraction. The results have conceptual and general character and are applicable to any material systems. Nature Publishing Group 2013-04-08 /pmc/articles/PMC3619142/ /pubmed/23563528 http://dx.doi.org/10.1038/srep01615 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Levitas, Valery I. Attariani, Hamed Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title | Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title_full | Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title_fullStr | Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title_full_unstemmed | Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title_short | Anisotropic Compositional Expansion and Chemical Potential for Amorphous Lithiated Silicon under Stress Tensor |
title_sort | anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619142/ https://www.ncbi.nlm.nih.gov/pubmed/23563528 http://dx.doi.org/10.1038/srep01615 |
work_keys_str_mv | AT levitasvaleryi anisotropiccompositionalexpansionandchemicalpotentialforamorphouslithiatedsiliconunderstresstensor AT attarianihamed anisotropiccompositionalexpansionandchemicalpotentialforamorphouslithiatedsiliconunderstresstensor |