Cargando…

Nonadiabatic Photodynamics of a Retinal Model in Polar and Nonpolar Environment

[Image: see text] The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruckenbauer, Matthias, Barbatti, Mario, Müller, Thomas, Lischka, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2013
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619535/
https://www.ncbi.nlm.nih.gov/pubmed/23470211
http://dx.doi.org/10.1021/jp400401f
Descripción
Sumario:[Image: see text] The nonadiabatic photodynamics of the all-trans-2,4-pentadiene-iminium cation (protonated Schiff base 3, PSB3) and the all-trans-3-methyl-2,4-pentadiene-iminium cation (MePSB3) were investigated in the gas phase and in polar (aqueous) and nonpolar (n-hexane) solutions by means of surface hopping using a multireference configuration-interaction (MRCI) quantum mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for radiationless deactivation to the ground state, and structural and electronic parameters are compared. A strong influence of the polar solvent on the location of the crossing seam, in particular in the bond length alternation (BLA) coordinate, is found. Additionally, inclusion of the polar solvent changes the orientation of the intersection cone from sloped in the gas phase to peaked, thus enhancing considerably its efficiency for deactivation of the molecular system to the ground state. These factors cause, especially for MePSB3, a substantial decrease in the lifetime of the excited state despite the steric inhibition by the solvent.