Cargando…

Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures

Circadian clocks exhibit ‘temperature compensation’, meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gould, Peter D, Ugarte, Nicolas, Domijan, Mirela, Costa, Maria, Foreman, Julia, MacGregor, Dana, Rose, Ken, Griffiths, Jayne, Millar, Andrew J, Finkenstädt, Bärbel, Penfield, Steven, Rand, David A, Halliday, Karen J, Hall, Anthony J W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Molecular Biology Organization 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619941/
https://www.ncbi.nlm.nih.gov/pubmed/23511208
http://dx.doi.org/10.1038/msb.2013.7
_version_ 1782265505526054912
author Gould, Peter D
Ugarte, Nicolas
Domijan, Mirela
Costa, Maria
Foreman, Julia
MacGregor, Dana
Rose, Ken
Griffiths, Jayne
Millar, Andrew J
Finkenstädt, Bärbel
Penfield, Steven
Rand, David A
Halliday, Karen J
Hall, Anthony J W
author_facet Gould, Peter D
Ugarte, Nicolas
Domijan, Mirela
Costa, Maria
Foreman, Julia
MacGregor, Dana
Rose, Ken
Griffiths, Jayne
Millar, Andrew J
Finkenstädt, Bärbel
Penfield, Steven
Rand, David A
Halliday, Karen J
Hall, Anthony J W
author_sort Gould, Peter D
collection PubMed
description Circadian clocks exhibit ‘temperature compensation’, meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature-compensated clock model by adding passive temperature effects into only the light-sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature-dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems-level understanding of period control in the plant circadian oscillator.
format Online
Article
Text
id pubmed-3619941
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher European Molecular Biology Organization
record_format MEDLINE/PubMed
spelling pubmed-36199412013-04-08 Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures Gould, Peter D Ugarte, Nicolas Domijan, Mirela Costa, Maria Foreman, Julia MacGregor, Dana Rose, Ken Griffiths, Jayne Millar, Andrew J Finkenstädt, Bärbel Penfield, Steven Rand, David A Halliday, Karen J Hall, Anthony J W Mol Syst Biol Article Circadian clocks exhibit ‘temperature compensation’, meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock. Our data demonstrate that two cryptochrome photoreceptors differentially control circadian period and sustain rhythmicity across the physiological temperature range. In order to test the hypothesis that the targets of light regulation are sufficient to mediate temperature compensation, we constructed a temperature-compensated clock model by adding passive temperature effects into only the light-sensitive processes in the model. Remarkably, this model was not only capable of full temperature compensation and consistent with mRNA profiles across a temperature range, but also predicted the temperature-dependent change in the level of LATE ELONGATED HYPOCOTYL, a key clock protein. Our analysis provides a systems-level understanding of period control in the plant circadian oscillator. European Molecular Biology Organization 2013-03-19 /pmc/articles/PMC3619941/ /pubmed/23511208 http://dx.doi.org/10.1038/msb.2013.7 Text en Copyright © 2013, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by-nc-sa/3.0/This article is licensed under a Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License.
spellingShingle Article
Gould, Peter D
Ugarte, Nicolas
Domijan, Mirela
Costa, Maria
Foreman, Julia
MacGregor, Dana
Rose, Ken
Griffiths, Jayne
Millar, Andrew J
Finkenstädt, Bärbel
Penfield, Steven
Rand, David A
Halliday, Karen J
Hall, Anthony J W
Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title_full Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title_fullStr Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title_full_unstemmed Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title_short Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures
title_sort network balance via cry signalling controls the arabidopsis circadian clock over ambient temperatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619941/
https://www.ncbi.nlm.nih.gov/pubmed/23511208
http://dx.doi.org/10.1038/msb.2013.7
work_keys_str_mv AT gouldpeterd networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT ugartenicolas networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT domijanmirela networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT costamaria networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT foremanjulia networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT macgregordana networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT roseken networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT griffithsjayne networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT millarandrewj networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT finkenstadtbarbel networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT penfieldsteven networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT randdavida networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT hallidaykarenj networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures
AT hallanthonyjw networkbalanceviacrysignallingcontrolsthearabidopsiscircadianclockoverambienttemperatures