Cargando…
The thymic medulla is required for Foxp3(+) regulatory but not conventional CD4(+) thymocyte development
A key role of the thymic medulla is to negatively select autoreactive CD4(+) and CD8(+) thymocytes, a process important for T cell tolerance induction. However, the involvement of the thymic medulla in other aspects of αβ T cell development, including the generation of Foxp3(+) natural regulatory T...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620359/ https://www.ncbi.nlm.nih.gov/pubmed/23530124 http://dx.doi.org/10.1084/jem.20122070 |
Sumario: | A key role of the thymic medulla is to negatively select autoreactive CD4(+) and CD8(+) thymocytes, a process important for T cell tolerance induction. However, the involvement of the thymic medulla in other aspects of αβ T cell development, including the generation of Foxp3(+) natural regulatory T cells (nT(reg) cells) and the continued maturation of positively selected conventional αβ T cells, is unclear. We show that newly generated conventional CD69(+)Qa2(−) CD4 single-positive thymocytes mature to the late CD69(−)Qa2(+) stage in the absence of RelB-dependent medullary thymic epithelial cells (mTECs). Furthermore, an increasing ability to continue maturation extrathymically is observed within the CD69(+)CCR7(−/lo)CCR9(+) subset of conventional SP4 thymocytes, providing evidence for an independence from medullary support by the earliest stages after positive selection. In contrast, Foxp3(+) nT(reg) cell development is medullary dependent, with mTECs fostering the generation of Foxp3(−)CD25(+) nT(reg) cell precursors at the CD69(+)CCR7(+)CCR9(−) stage. Our results demonstrate a differential requirement for the thymic medulla in relation to CD4 conventional and Foxp3(+) thymocyte lineages, in which an intact mTEC compartment is a prerequisite for Foxp3(+) nT(reg) cell development through the generation of Foxp3(−)CD25(+) nT(reg) cell precursors. |
---|