Cargando…
Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research
Background: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabol...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620742/ https://www.ncbi.nlm.nih.gov/pubmed/23384616 http://dx.doi.org/10.1289/ehp.1205657 |
_version_ | 1782265640526020608 |
---|---|
author | Hebels, Dennie G.A.J. Georgiadis, Panagiotis Keun, Hector C. Athersuch, Toby J. Vineis, Paolo Vermeulen, Roel Portengen, Lützen Bergdahl, Ingvar A. Hallmans, Göran Palli, Domenico Bendinelli, Benedetta Krogh, Vittorio Tumino, Rosario Sacerdote, Carlotta Panico, Salvatore Kleinjans, Jos C.S. de Kok, Theo M.C.M. Smith, Martyn T. Kyrtopoulos, Soterios A. |
author_facet | Hebels, Dennie G.A.J. Georgiadis, Panagiotis Keun, Hector C. Athersuch, Toby J. Vineis, Paolo Vermeulen, Roel Portengen, Lützen Bergdahl, Ingvar A. Hallmans, Göran Palli, Domenico Bendinelli, Benedetta Krogh, Vittorio Tumino, Rosario Sacerdote, Carlotta Panico, Salvatore Kleinjans, Jos C.S. de Kok, Theo M.C.M. Smith, Martyn T. Kyrtopoulos, Soterios A. |
author_sort | Hebels, Dennie G.A.J. |
collection | PubMed |
description | Background: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography–time-of-flight mass spectrometry)], and wide-target proteomic profiles. Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at –80(o)C or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks. Results: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13–17 years. Conclusions: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study. |
format | Online Article Text |
id | pubmed-3620742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | National Institute of Environmental Health Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-36207422013-04-23 Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research Hebels, Dennie G.A.J. Georgiadis, Panagiotis Keun, Hector C. Athersuch, Toby J. Vineis, Paolo Vermeulen, Roel Portengen, Lützen Bergdahl, Ingvar A. Hallmans, Göran Palli, Domenico Bendinelli, Benedetta Krogh, Vittorio Tumino, Rosario Sacerdote, Carlotta Panico, Salvatore Kleinjans, Jos C.S. de Kok, Theo M.C.M. Smith, Martyn T. Kyrtopoulos, Soterios A. Environ Health Perspect Research Background: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. Objectives: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography–time-of-flight mass spectrometry)], and wide-target proteomic profiles. Methods: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at –80(o)C or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks. Results: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13–17 years. Conclusions: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study. National Institute of Environmental Health Sciences 2013-02-05 2013-04 /pmc/articles/PMC3620742/ /pubmed/23384616 http://dx.doi.org/10.1289/ehp.1205657 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Hebels, Dennie G.A.J. Georgiadis, Panagiotis Keun, Hector C. Athersuch, Toby J. Vineis, Paolo Vermeulen, Roel Portengen, Lützen Bergdahl, Ingvar A. Hallmans, Göran Palli, Domenico Bendinelli, Benedetta Krogh, Vittorio Tumino, Rosario Sacerdote, Carlotta Panico, Salvatore Kleinjans, Jos C.S. de Kok, Theo M.C.M. Smith, Martyn T. Kyrtopoulos, Soterios A. Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title | Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title_full | Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title_fullStr | Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title_full_unstemmed | Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title_short | Performance in Omics Analyses of Blood Samples in Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health Research |
title_sort | performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620742/ https://www.ncbi.nlm.nih.gov/pubmed/23384616 http://dx.doi.org/10.1289/ehp.1205657 |
work_keys_str_mv | AT hebelsdenniegaj performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT georgiadispanagiotis performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT keunhectorc performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT athersuchtobyj performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT vineispaolo performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT vermeulenroel performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT portengenlutzen performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT bergdahlingvara performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT hallmansgoran performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT pallidomenico performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT bendinellibenedetta performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT kroghvittorio performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT tuminorosario performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT sacerdotecarlotta performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT panicosalvatore performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT kleinjansjoscs performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT dekoktheomcm performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT smithmartynt performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT kyrtopoulossoteriosa performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch AT performanceinomicsanalysesofbloodsamplesinlongtermstorageopportunitiesfortheexploitationofexistingbiobanksinenvironmentalhealthresearch |