Cargando…

Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta

BACKGROUND: The RhoA/ROCK signaling pathway mediates vascular smooth muscle contraction while endogenous NO induces vasodilation through its inhibition. Since myosin light chain phosphatase (MLCP) and eNOS are targeted by RhoA/ROCK upregulation then turn to lead abnormalities in vasculature, we aime...

Descripción completa

Detalles Bibliográficos
Autores principales: Cicek, Figen Amber, Kandilci, Hilmi B, Turan, Belma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620917/
https://www.ncbi.nlm.nih.gov/pubmed/23530857
http://dx.doi.org/10.1186/1475-2840-12-51
Descripción
Sumario:BACKGROUND: The RhoA/ROCK signaling pathway mediates vascular smooth muscle contraction while endogenous NO induces vasodilation through its inhibition. Since myosin light chain phosphatase (MLCP) and eNOS are targeted by RhoA/ROCK upregulation then turn to lead abnormalities in vasculature, we aimed to examine whether less endothelial NO-production and inhibited eNOS together with an upregulation of RhoA/ROCK signaling pathway in thoracic aorta can play an important role in vascular dysfunction under hyperglycemia. METHODS: We used streptozotocin-injected rats, as a model of type 1 diabetes, and their lean controls to investigate the role of ROCK upregulation in the function of toracic aorta by using electrophysiological and biochemical techniques. RESULTS: The protein level of ROCK isoform ROCK2 was found to be 2.5-fold higher in endothelium-intact aortic rings of the diabetic rats compared to those of the controls while its level in endothelium-denuded rings was similar among these two groups. Phosphorylation level of eNOS in endothelium-intact rings from the diabetics was 50% less compared to that of the control. ROCK inhibitors, either Y27632 or HA1077, induced concentration-dependent relaxation with a marked left-shift in phenylephrine pre-contracted endothelium-intact rings from either diabetics or high glucose incubated controls while pretreatment of these rings with L-NAME abolished this shift, fully. Moreover, phosphorylation levels of both MLCP and MLC in endothelium-denuded rings were markedly higher in the diabetics than the controls. CONCLUSION: We demonstrated that diabetes-induced vascular dysfunction can arise due to either inbition of eNOS, thereby less endothelial NO-production, either directly or indirectly, in part, due to an upregulation of ROCK2 by hyperglycemia. Additionally, our data demonstrate that high phosphorylation levels of both MLC and MLCP in endothelium-denuded rings can be due to a less endothelial NO-production dependent ROCK upregulation in the smooth muscle cells under hyperglycemia, as well.