Cargando…

Horizontal transfer of OC1 transposons in the Tasmanian devil

BACKGROUND: There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilbert, Clement, Waters, Paul, Feschotte, Cedric, Schaack, Sarah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621081/
https://www.ncbi.nlm.nih.gov/pubmed/23445260
http://dx.doi.org/10.1186/1471-2164-14-134
Descripción
Sumario:BACKGROUND: There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. RESULTS: Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. CONCLUSIONS: This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials.